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AN ASSESSMENT OF MULTIPLE SATELLITE-AIDED CAPTURE
AT JUPITER

Alfred E. Lynam∗, Kevin W. Kloster†, and James M. Longuski‡

Satellite-aided capture is a mission design concept used to reduce the delta-v required to
capture into a planetary orbit. The technique employs close flybys of a massive moon to
reduce the energy of the planet-centered orbit. A sequence of close flybys of two or more of
the Galilean moons of Jupiter may further decrease the delta-v cost of Jupiter orbit insertion.
A Ganymede-Io sequence saves 207 m/s of delta-v over a single Io flyby. These sequences
have the potential to benefit both NASA’s Jupiter Europa orbiter mission and ESA’s Jupiter
Ganymede orbiter mission.

INTRODUCTION

The propellant required to capture into orbit at another planet is costly to carry across the Solar System.
Any reduction in capture ∆V can result in a significant decrease in the mass and cost of the spacecraft. One
method of reducing the ∆V required for capture into orbit at another planet is to use gravity-assist maneuvers
at the moons of the planet. This satellite-aided capture technique was first proposed for the Jupiter system
by Longman1 and Longman and Schneider.2 They showed that gravity-assist flybys of the Galilean moons
could help capture a spacecraft into orbit about Jupiter. The analysis demonstrated the effect of one- and two-
moon encounters on the orbital energy of the incoming Jupiter-centered, hyperbolic orbit. Cline3 determined
the minimum ∆V required for a capture sequence involving a single flyby of Ganymede and a Jupiter orbit
insertion (JOI) maneuver.

The effects of various flyby parameters on the efficiency of satellite-aided capture are investigated by Nock
and Uphoff.4 The parameters they vary are: perijove radius after flyby, flyby altitude, declination of the
incoming satellite-centered hyperbola, and the distribution of ∆V between powered satellite flybys and the
JOI maneuver. In addition, they determine the phasing and transfer orbit parameters necessary to accomplish
double-satellite-aided capture. Malcolm and McInnes5 formulate a solution to the satellite-aided capture
problem using a vectorial flyby targeting technique. Yam6 presents an analytical technique for targeting a
planet-centered V∞ vector to the position vector of a moon which determines the phase angle between the
incoming Jupiter-centered asymptote and the flyby encounter.

The Galileo mission to Jupiter was the first mission to implement satellite-aided capture. In 1995, the
Galileo orbiter executed a medium-altitude flyby of Io to decrease the JOI ∆V requirements by 175 m/s to 644
m/s7 (its targeted flyby altitude was 1000 km, but its actual flyby altitude was 892 km). The Europa Orbiter
Mission8−10 and the Jupiter Icy Moons Orbiter11 had prepared single satellite-aided capture trajectories using
Ganymede and Callisto, respectively.

We extend the gravity assist technique to include close flybys of multiple Galilean moons during Jupiter
capture. The entire solution space of efficient, multiple-satellite-aided capture trajectories at Jupiter is sys-
tematically explored by categorizing capture sequences into four different types based on flyby geometry and
timing: double-satellite-aided capture, Laplacian12−15 triple- satellite-aided capture (Ganymede, Europa, and
Io), Callistan triple-satellite-aided capture (Callisto and two others), and quadruple-satellite-aided capture.
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ASSUMPTIONS AND METHODOLOGY

We employ several simplifying assumptions to design multiple-satellite-aided capture trajectories. Be-
cause the Galilean moons have low orbital eccentricities and inclinations, they are assumed to be in circular,
coplanar orbits about Jupiter. Trajectory sequences with multiple flybys are designed in an ephemeris-free,
patched-conic model where each moon flyby represents a discrete event in the Jupiter-centered trajectory. For
periodic flyby sequences, we give a repeat-time interval based on the synodic period of the desired moons.
This model also assumes that the incoming interplanetary trajectory can be adjusted to align with the first
flyby. We ignore all retrograde capture strategies because all of the Galilean moons are in direct orbits about
Jupiter.

These assumptions enable the multiple-satellite-aided capture problem to be studied in isolation from the
timing and interplanetary trajectory problems. The patched-conic model is useful in this application because
the entire capture sequence occurs quickly, which limits the effects of perturbing accelerations.

Several of the capture trajectories designed using the patched-conic model are integrated in a full-ephemeris
model (AGI’s STK/Astrogator16) to ensure that the trajectories physically exist. In this model, the full gravity
fields (including spherical harmonics) of the Sun, Jupiter, Io, Europa, Ganymede, and Callisto are applied to
a spacecraft placed along a Jupiter-approach asymptote. Solar radiation pressure and general relativity per-
turbations are also applied to maximize the fidelity of the solutions. The starting time and angular parameters
of the approach asymptote are varied to target the B-plane parameters of the inbound moon flybys, while the
magnitude and direction of the JOI maneuver are used to target the outbound flybys and capture orbit period.

Using the STK model, we determine whether flyby sequences align with near-Hohmann interplanetary
trajectories by finding the right ascension (RA) of their approach asymptote and determining how close it is
to the RA for a Hohmann trajectory. If it is within 10 degrees of the Hohmann RA, its interplantary trajectory
will at least approach Earth’s orbital radius. Furthermore, we ignore the phasing of the Earth.

In our analysis, we set aside the issue of how to navigate such captures. First we must examine the
potential benefits in a deterministic model and assess the physical realizability of these trajectories. Only
after resolving deterministic feasibility, can we begin to answer the question of whether these benefits can be
realistically achieved with current navigation capabilities or with capabilities that may become available in
the near future (e.g. via autonomous navigation). We do, however, use the delta-Delta-v method17 to perform
a sensitivity analysis for flyby errors. For example, if the first flyby of a sequence has a small error, this error
will propagate geometrically to a medium error in the second flyby, and to a much larger error in the third
or fourth flybys. This analysis roughly assesses the difficulties of navigating these flyby sequences without
actually solving them.

PATCHED-CONIC METHOD OF INTERMOON TRANSFERS

The patched-conic method has been applied extensively as a first-order approximation of the three-body
problem.1−6, 18 The input parameters for a gravity-assist flyby are the pre-flyby semi-major axis (ain) orbital
energy (Ein), or V∞; and the eccentricity(ein) or perijove (Rp,in) of the Jupiter-centered orbit. The gravity-
assist algorithm provides the moon-centered, hyperbolic-excess velocity (V∞,moon) and the post-flyby Jovi-
centric semi-major axis (aout) and eccentricity (eout). These outputs are used as inputs into the same algorithm
for the next flyby in the sequence until the last flyby in the sequence is completed. The process provides the
semi-major axes and eccentricities of every transfer orbit in the flyby sequence.

True Anomaly and Time of Flight

The patched-conic algorithm provides sufficient information (i.e. approximate values for asc,out and esc,out)
to determine the true anomaly relations and the time of flight for the entire trajectory sequence. First, we
compute the difference in the true anomalies between the incoming Jupiter arrival asymptote and the first
moon flyby using the method developed by Yam.6

∆f = 360◦ − fmoon + f∞ (1)
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where

fmoon = − cos−1
[
−amoon + asc,in(1− (esc,in)2)

amoonesc,in

]
(2)

f∞ = − cos−1
[

1

esc,in

]
(3)

where fmoon is the true anomaly of the spacecraft’s orbit when it reaches the desired moon, f∞ is the true
anomaly of the spacecraft’s orbit along the approach asymptote, and ∆f is the difference in the true anomalies
between the two positions. The time of flight from the asymptote to the moon is infinite in the conic model,
so time-of-flight computations are not meaningful.

Next, we determine the true anomalies and time of flight for the transfer leg from the first flyby to a second
flyby. The equations used are similar to those given by Nock and Uphoff4

∆f1,2 = fmoon,1 − fmoon,2 (4)

where

fmoon = − cos−1
[
(−amoon + asc,out(1− (esc,out)

2))/(amoonesc,out)
]

(5)

where fmoon,1 is the true anomaly of the spacecraft at the first moon, fmoon,2 is the true anomaly of the space-
craft at the second moon, and ∆f1,2 is the difference in the true anomalies of the encounters. If the spacecraft
is still in a hyperbolic orbit during this transfer leg, the hyperbolic anomalies of both of the encounters
(Hmoon,1 and Hmoon,2) can be found and the time of flight (T1,2) computed from:

T1,2 =
√
−(asc,out)3/µJ [(esc,out sinhHmoon,2 −Hmoon,2)− (esc,out sinhHmoon,1 −Hmoon,1)] (6)

where

Hmoon = − cosh−1 [(asc,out − amoon/(asc,outesc,out)] (7)

For low incoming V∞ values, such as those given by low-thrust trajectories, it is possible that the spacecraft
may have captured into a tenuous, long-period elliptical orbit after the first flyby. If that is the case, we modify
the method to calculate the eccentric anomalies (Emoon,1 and Emoon,2) of the spacecraft at the two encounters
and solve Kepler’s equation for time of flight (T1,2)

T1,2 =
√

(asc,out)3/µJ [(Emoon,2 − esc,out sinEmoon,2)− (Emoon,1 − esc,out sinEmoon,1)] (8)

where

Emoon = − cos−1 [(asc,out − amoon)/(asc,outesc,out)] (9)

After the final flyby of the incoming leg, the spacecraft performs a JOI maneuver at its perijove. The
difference between the true anomalies and the time of flight between the final flyby and the perijove are
determined by Equations (5) – (8) with the final hyperbolic/eccentric, and true anomalies defined to be zero.
The effect of the JOI delta-v (∆VJOI) on the spacecraft’s orbit is determined from the perijove and orbital
energy of the orbit before the maneuver:

Vp,in =
√

2 (Ep,in + µJ/Rp,in) (10)

where Vp,in is the velocity at perijove before the maneuver, Ep,in is the orbital energy before the maneuver, and
Rp,in is the radius of the perijove of the orbit:
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Figure 1 Graphical representation of the angle between the asymptote and the
Ganymede encounter(∆f ), angle between Ganymede and Io encounters (∆fGa,Io), and
the angle between the Io encounter and JOI at perijove (fIo).

Vp,out = Vp,in −∆VJOI (11)

Ep,out = (Vp,out)
2/2− µJ/Rp,out (12)

where Vp,out is the velocity at perijove after the maneuver and Ep,out is the orbital energy after the maneuver.

If there are any encounters after the JOI maneuver, the phase angles and times of flight can be computed
by modifying the above methods. Outbound encounters cause the sign of the hyperbolic, eccentric, and true
anomalies to change from negative to positive. Another change is that the spacecraft travels from the inner
moons to the outer moons rather than vice versa.

HIGH-FIDELITY TRAJECTORY INTEGRATION USING STK

We validate the existence of multiple-satellite-aided capture trajectories discovered using the patched-conic
model via numerical integration. Sample trajectories from the patched-conic model are input into AGI’s STK
8.1.3 software16 to find full-ephermeris, high-fidelity trajectories. We design these trajectories such that they
begin several days before the modeled spacecraft reaches Callisto’s orbit.

With this strategy, we develop algorithms to discover individual capture sequences and then find equivalent
sequences every synodic period (for double- and Laplacian triple-satellite-aided-capture sequences) or ape-
riodically (for Callistan triple-satellite-aided capture and quadruple-satellite-aided capture). After searching
through enough dates, any particular type of satellite-aided capture sequence will indubitably align with an
interplanetary trajectory. We perform a direct analysis of the interplanetary flyby windows for three different
types of double flyby sequences. Since triple- and quadruple-satellite-aided capture sequences occur much
less frequently than double-satellite-aided capture sequences, so it is more difficult to predict when they align
with interplanetary trajectories. When a satellite-aided capture trajectory does happens to align with an avail-
able interplanetary trajectory from Earth, the trajectory could be integrated backwards to Earth using STK’s
backwards-propagation function.
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Spacecraft and Software Parameters

A propagator for the trajectories was defined using STK’s best gravity fields for the Sun, Jupiter, Ganymede,19

Callisto,20 Io,21 and Europa.22 The higher-order, spherical-harmonic expansion terms implemented for each
of the gravity fields are listed in Table 1. Additionally, solar radiation pressure and general relativity effects
were included in the propagator. The exposed area for solar radiation pressure was estimated to be 12.42 m2

from the spacecraft model in NASA’s JEO mission report.23 The JOI manuever was modeled as a finite burn
beginning at perijove with an Isp of 323 seconds and a thrust of 890 N.23

Table 1. STK Gravity Fields

Gravity Fields Sun Jupiter Ganymede Callisto Io Europa

GM (km3/s2) 1.327122 x 1011 1.26686535 x 108 9886.6 7169.292 5960 3202.72
J2 (x 10−6) — −14696.43 −127.27 −32.7 −1845.9 −435.5

C22 (x 10−6) — — 38.18 10.2 553.7 131.0
S22 (x 10−6) — — — -1.1 — -11.9
J3 (x 10−6) — 0.64 — — — —
J4 (x 10−6) — 587.14 — — — —
J5 (x 10−6) — 0 — — — —
J6 (x 10−6) — −34.25 — — — —

The high-fidelity of the propagator is necessary because of the numerical sensitivity of the multiple-
satellite-aided capture sequences. For a Ganymede-Io-JOI-Europa-Callisto four-flyby capture sequence, the
spacecraft was optimally inserted into an 87-day orbit with only a point-mass gravity model for all six bodies.
However, the high-fidelity model with oblateness, Solar radiation pressure, and general relativity converged
on a 168-day orbit as the optimal sequence. These differences are not sufficient to preclude the possibility of a
sequence occurring at a given time, but they do substantially affect the results of certain sequences, especially
Callistan triple-satellite-aided capture sequences and quadruple-satellite-aided capture sequences.

STK Targeting Algorithm

STK employs a differential-corrector targeting algorithm that varies a user-defined set of control variables
to converge on another user-defined set of target variables (within a specified tolerance). The targeter first
propagates the nominal sequence and determines the initial values of the target variables. The targeter then
perturbs each control variable and uses finite differencing to determine a matrix of partial derivatives. The
matrix is used to correct the control variables in the nominal trajectory and re-propagate the trajectory such
that the target variables are closer to their desired values. This process is repeated until the target variables
are equal to their desired values (within an acceptable tolerance).

Although each type of sequence requires a unique targeting algorithm, most of the control and target vari-
ables remain the same for all sequences. The potential control parameters contained in the arrival asymptote
are initial time (Epoch), declination (Dec), right ascension of the approach asymptote (RA), the velocity
azimuth at perijove (Vazimuth,p), target perijove (Rp), C3 energy, and true anomaly. Various combinations of
these control variables were tested with STK’s targeting algorithm and we determined that target perijove,
C3 energy, and true anomaly are ineffective as control parameters in the targeting sequence, so they are fixed
at their nominal values. However, the nominal values of these three variables can be manually modified to
change the trajectory solutions. The JOI manuever can also be used as a control with either one (thrusting
directly against the velocity vector) or three (a vector maneuver) control variables. Thus, the total number of
potential control parameters is seven: Epoch, Dec, RA, Vazimuth,p, and the three ∆VJOI manuever components.

The target parameters are the B-plane parameters of each of the moons and the C3 energy of the final orbit.
An optimal flyby occurs at a B-plane angle of 0 degrees for inbound encounters and a B-plane angle of 180
degrees for an outbound encounter. Thus, the target B-plane parameters are 0 for B · R, a positive value for
B · T that corresponds with the desired flyby altitude for inbound flybys and a negative value for B · T that
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corresponds with the desired flyby altitude for outbound flybys. Hence, the number of target parameters is
one plus two times the number of gravity-assist flybys.

On some flyby sequences, the available control parameters are insufficient to converge all of the target
parameters. In those cases, either the target perijove can be manually varied, the targeted capture orbit period
can be freed, or the B-plane parameters on one of the flybys can be allowed to become suboptimal. Manually
changing parameters increases the amount of time required to converge trajectories because the sequence
has to be re-converged every time the parameters are manually varied. Also, the suboptimal flybys of some
moons cause the entire capture sequence to become less ∆V -efficient.

NAVIGATION AND OPERATIONS REQUIREMENTS

All of the trajectories described in this paper so far are deterministic trajectories. If the acceleration models,
ephemerides, and spacecraft position and velocity were known perfectly, this model would be sufficient to
fly a real mission with a multiple-satellite-aided capture trajectory. In a real mission, however, none of these
variables are known to perfect precision. Therefore, navigational errors must be taken into account. A full
navigational analysis is beyond the scope of this paper; instead, we provide a rough sensitivity analysis of
the flyby sequences. The “delta-Delta-v” navigation method is used to estimate the propagation of errors
throughout the sequence.

Delta-Delta-V Flyby Navigation Method

We estimate the propagation of flyby errors using the delta-Delta-v method17 by first calculating the equiv-
alent ∆V of gravity assist flybys:

∆Veq =
2V∞,moonµmoon

µmoon + V 2
∞,moon(rmoon + hp)

(13)

where ∆Veq is the equivalent ∆V of the flyby, V∞,moon is the hyperbolic excess velocity with respect to a
moon, µmoon is the gravitational parameter of a moon, rmoon is the physical radius of a moon, and hp is the
flyby altitude. The equivalent ∆V is computed for the nominal trajectory and for a perturbed trajectory that
has a slightly different flyby altitude. The difference between the equivalent ∆V of the nominal trajectory
and the perturbed trajectory is called the delta-Delta-v:

δ(∆V ) = ∆Veq,nom −∆Veq,pert (14)

where δ(∆V ) is the variation of the ∆V caused by flyby error, ∆Veq,nom is the equivalent ∆V of the nominal
trajectory, and ∆Veq,pert is the equivalent ∆V of the perturbed trajectory.

The B-plane error of the next flyby is computed by multiplying the delta-Delta-v by the time of flight of
the transfer:

Berror = δ(∆V )(T1,2) (15)

where Berror is the B-plane error in the second flyby and T1,2 is the time of flight of the transfer between
the two moons. If there is a third flyby in the sequence before JOI, the B-plane error can be used as the
perturbation in the second flyby, and the B-plane error in the third flyby can be computed using the same
method.

If JOI occurs in between flybys or before the entire sequence, we must account for the error in the JOI in the
B-plane error calculations. We assume that the JOI manuever has a one-percent error in the worst direction
(i.e. the direction that causes the error to compound with the flyby errors). Since the delta-Delta-v method
is already a rough estimate, the fidelity is not significantly decreased when we merely add the B-plane error
caused by the JOI to the B-plane error caused by the flybys:

Berror = δ(∆Vflyby)(T1,2) + δ(∆VJOI)(TJOI,2) (16)
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where δ(∆Vflyby) is the variation of the flyby ∆V caused by the flyby error, δ(∆VJOI) is the variation of the
JOI ∆V caused by the JOI error, and TJOI,2 is the time of flight of the transfer from perijove to the flyby after
JOI.

This delta-Delta-v method is a very rough method for predicting errors, but it does provide some insight
into which sequences are more difficult to navigate. It is also a purely ballistic method, so it does not take
into account whether trajectory correction maneuvers could be executed in-between flybys of moons. The
sequences that finish all of their flybys before JOI are also more operationally feasible than the others because
the JOI maneuver is a mission-critical event.

DOUBLE-SATELLITE-AIDED CAPTURE RESULTS

Patched-Conic Double Satellite-Aided Capture

Capture sequences involving close flybys of two Galilean moons are collectively termed double-satellite-
aided capture. For ballistic interplanetary trajectories from Earth, no double-flyby sequence can capture a
spacecraft into Jupiter orbit without a JOI maneuver. Hence, each of these sequences must include a JOI
maneuver in addition to the two flybys. Geometrically, double-flyby sequences only occur when the first
moon is at a specific range of angles from the second moon. Noting that the moons are assumed to be in
circular, coplanar orbits, opportunities only repeat every synodic period between the two moons:

S =
2π

n1 − n2
(17)

where S is the synodic period, n1 is the mean motion of the inner moon, and n2 is the mean motion of
the outer moon. For the Galilean moons of Jupiter, the mean motion of each moon and the synodic period
between each set of moons are given in Table 2.

Table 2. Synodic Periods between Galilean Moons

Sequence n1 (deg/day) n2 (deg/day) S (days)

Io-Europa 203.4890 101.3747 3.5255
Io-Ganymede 203.4890 50.3176 2.3503

Io-Callisto 203.4890 21.5711 1.9789
Europa-Ganymede 101.3747 50.3171 7.0509

Europa-Callisto 101.3747 21.5711 4.5111
Ganymede-Callisto 50.3176 21.5711 12.5232

The double satellite-aided capture trajectories that require the least ∆V are Io-Ganymede sequences be-
cause Io is deep in Jupiter’s gravity well and Ganymede is the most massive moon in the Solar System.
We divide these sequences into 4 different types based on the order of the flybys: Ganymede-Io-JOI (GIJ),
Ganymede-JOI-Io (GJI), Io-JOI-Ganymede (IJG), and JOI-Io-Ganymede (JIG). Figure 2 shows an example
IJG capture case.

All four Io-Ganymede sequences require approximately the same amount of ∆VJOI to capture into a 200-
day orbit. (All other capture sequences in this paper can be assumed to capture into 200-day orbits unless
otherwise noted.) For radii of perijove above 4 RJ, these sequences require about 200 m/s less ∆V than
equivalent single satellite-aided capture with either Io or Ganymede. Table 3 gives the ∆VJOI for the Io-
and Ganymede-aided capture, Io-aided capture, Ganymede-aided capture, and unaided capture for a range of
perijoves.

A potential disadvantage of these Io-Ganymede sequences is that they all pass through Jupiter’s harsh radi-
ation environment near Io’s orbit (at 5.9RJ). For low-radiation capture with perijoves above 8RJ, Ganymede-
Callisto sequences are the most efficient double-satellite-aided-capture sequences. Table 4 gives the ∆VJOI
for Ganymede- and Callisto-aided capture, Ganymede-aided capture, Callisto-aided capture, and unaided
capture at perijoves above 8 RJ.
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Figure 2 Io-JOI-Ganymede sequence with a perijove of 5.5 RJ, a V∞ of 5.6 km/s,
flyby altitudes of 300 km, and a ∆VJOI of 370 m/s.

Table 3. ∆V for Io and Ganymede Capture Sequences,a m/s

JOI(5 RJ) JOI(4 RJ) JOI(3 RJ) JOI(2 RJ) JOI(1.01 RJ)
Flyby Sequences ∆V, m/s ∆V, m/s ∆V, m/s ∆V, m/s ∆V, m/s

Unaided 825 735 641 524 371
Ganymede 630 573 507 425 308

Io 556 526 483 416 311
GIJ 349 355 346 311 242
GJI 337 349 342 309 240
IJG 345 350 342 309 240
JIG 330 340 333 299 228

a V∞ is 5.6 km/s and flyby altitudes are 300 km.

Table 4. ∆V for Ganymede and Callisto Capture Sequencesa, m/s

JOI(14 RJ) JOI(13 RJ) JOI(12 RJ) JOI(11 RJ) JOI(10 RJ) JOI(9 RJ)
Flyby Sequences ∆V, m/s ∆V, m/s ∆V, m/s ∆V, m/s ∆V, m/s ∆V, m/s

Unaided 1366 1317 1267 1215 1160 1101
Ganymede 962 863 830 810 791 771

Callisto 1084 1054 1021 985 948 904
CGJ 646 567 555 556 559 558
CJG 528 508 518 529 538 540
GJC 620 550 539 541 544 544
JGC 519 498 506 517 526 529

a V∞ is 5.6 km/s and flyby altitudes are 300 km.
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Three of the remaining types of sequences—Ganymede-Europa sequences, Io-Europa sequences, and Io-
Callisto sequences—cost more ∆V than Io-Ganymede sequences and Ganymede-Callisto sequences, but
they still cost substantially less ∆V than single satellite-aided capture at Io. The ∆V costs of Europa-Callisto
sequences are comparable to Io-aided capture.

Integrated Double-Satellite-Aided Capture

Double-satellite-aided capture sequences involve the targeting of only four B-plane parameters (two for
each moon) and the final C3 energy, so the four available hyperbolic asymptote control variables (I.C.’s) and
an anti-velocity-vector JOI control variable are sufficient to converge every double-satellite-aided capture
sequence. From a computational perspective, the order of the double-flyby sequences is more important than
the set of two moons chosen. The three possible double-flyby sequences are: both moons then JOI, JOI in
between moon flybys, and JOI then both flybys.

Table 5. Double Flyby Sequence Targeting

Sequence Type Event 1 Event 2 Event 3 Event 4 Event 5

Moon-Moon-JOI I.C.’s (4 C) Flyby 1 B-plane(2 T) Flyby 2 B-plane(2 T) JOI (1 C) C3(1 T)
Moon-JOI-Moon I.C.’s (4 C) Flyby 1 B-plane(2 T) JOI (1 C) Flyby 2 B-plane(2 T) C3(1 T)
JOI-Moon-Moon I.C.’s (4 C) JOI (1 C) Flyby 1 B-plane(2 T) Flyby 2 B-plane(2 T) C3(1 T)

Since both sets of B-plane parameters can always be precisely targeted, all such double-flyby sequences
are considered to be optimal. Because these solutions are optimal, the ∆VJOI required is approximately equiv-
alent to the patched-conic estimates. The target radius of perijove and target C3 energy can also be manually
modified to get the desired closest approach distance to Jupiter and final orbit shape. These manual modifi-
cations, particularly the modification of the target perijove, also increase the range of potential interplanetary
trajectories that are available to these double-flyby sequences.

We analyze the interplanetary flyby windows of several double-satellite-aided capture sequences by con-
verging several trajectories, recording their RA, and determining the RA that corresponds to a Hohmann
trajectory. The RA is useful because it provides the angle of the incoming V∞ vector of the capture sequence
with respect to a Jupiter-fixed frame. We then compare the recorded RA from a double-satellite-aided capture
sequence with the RA of a Hohmann transfer from Earth at that particular date. If the RA of the trajectory
is close to the RA for a Hohmann trajectory, then it is possible to find an interplanetary trajectory that will
align with the double-satellite-aided capture sequence. We note that any of the triple- or quadruple-satellite-
aided capture sequences presented later in this paper correspond to special cases of this analysis (i.e. a single
RA angle in the graph), so each of those trajectories only has about a 1 in 18 chance (within ±10◦ of the
Hohmann angle out of 360◦ of possible RA values) of aligning with an optimal interplanetary trajectory.

We choose two double-satellite-aided capture trajectories for each window: a trajectory that is close to
the maximum possible perijove (i.e. the orbital radius of the moon closest to Jupiter in that sequence) and a
trajectory that is close to the minimum possible perijove (the physical radius of Jupiter). All other trajectories
that are within the window have perijoves, RA, and perijove times that are between these two extrema. The
two extreme trajectories for the second window are found by increasing the initial time of each of the original
extreme trajectories by one synodic period of the two moons (see Table 2) and re-converging. We repeat this
process until we can deduce the behavior of the particular type of double-satellite-aided capture sequence
(e.g. Ganymede-Io-JOI).

Interplanetary flyby windows for Ganymede and Io double-satellite-aided capture. Figure 3 is a polar
plot of the RA angles of each of six successive interplanetary windows. The plot shows that there are three
distinct flyby windows every Ganymede orbital period. The mismatch between the period of Ganymede
(7.1546 days) and three times the synodic period of Io and Ganymede (7.0509 days) causes a RA offset of
about five degrees every three windows.
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Since the first three windows span 90 degrees of RA and about 15 more degrees are spanned every addi-
tional seven days, the entire 360 degrees of RA will be spanned in about 18 weeks. Since we are using a
Jupiter-centered coordinate frame rather than a heliocentric frame, the Hohmann angle varies by 360 degrees
every Jupiter orbital period of 11.9 years. This effect means that the Hohmann angle will change by about 10
degrees over the 18 weeks. The Hohmann angle changes in the opposite direction from the window offset,
so it effectively reduces the amount of time required to ensure that an interplanetary trajectory will occur to
about 16 weeks.

July 11
window opens

July 11 
window closes

July 13 
window opens

July 13 
window closes July 15−16

window opens

July 15−16
window closes

July 18
window closes

July 18 
window opens

July 20
window opens

July 20 
window closes

July 22−23 
window opens

July 22−23
window closes

Hohmann RA

Figure 3 Polar plot of the RA angles of Ganymede-Io-JOI flyby windows. The
Hohmann RA angle is not encompassed by a petal, so a Ganymede-Io-JOI capture
sequence is not available for an interplanetary trajectory from Earth during this ar-
rival time frame. The petals rotate about 6 degrees every week, so a Ganymede-Io-JOI
sequence will become available in about 8 weeks.

Another Ganymede and Io sequence, Ganymede-JOI-Io, has a much larger range of available interplanetary
trajectories because about 270 degrees of the 360 degrees of RA are spanned at any given time. The remaining
RA angles would be able to be spanned about 6 weeks after the original time. We plot a polar plot of the
Ganymede-JOI-Io sequence in Figure 4.

Interplanetary Windows for the Callisto-Ganymede-JOI sequence. The Callisto-Ganymede-JOI sequence
has somewhat different behavior from the Ganymede-Io-JOI sequences because of the dynamics of Ganymede
and Callisto. The orbital period of Callisto (16.69 days), the synodic period of Callisto and Ganymede (12.52
days), and the orbital period of Ganymede (7.155 days) are very close to a 3:4:7 resonance with a near-
resonance period of approximately 50 days. Hence, Figure 5 shows a barely recognizable change in the
windows that corresponds to about 0.5 degrees every 50 days. However, the Hohmann angle changes by
about 4 degrees during that same time period. Thus, the motion of Jupiter’s orbit around the Sun dominates
the mismatch between flybys for a Callisto-Ganymede-JOI case. We observe 4 “petals” on the polar plot
(each spanning about 30–40 degrees), so about 140 degrees of RA are spanned at any given time. However,
a flyby sequence is not possible unless the Hohmann angle is encompassed by a petal (which will occur in at
most two years in Figure 5).
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July 11−12 
window closes

July 11−12
window opens

July 13−14
window closes

July 13−14 
window opens

July 16−17
window opens

July 16−17
window closes

Hohmann RA

Figure 4 Polar plot of the RA angles of Ganymede-JOI-Io flyby windows. In this
example, the Hohmann RA angle is contained in one of the petals, so a Ganymede-
JOI-Io capture sequence is available for an interplanetary trajectory from Earth.

Red: August 30−31 
window opens

Orange : October 
19−20  window opens

Red: August 30−31 
window closes

Orange: October 
19−20 window closes

Dark Blue: August 
17−19 window opens
Light Blue: October 
7−8 window opens

Dark Blue: August 
17−19 window closes
Light Blue: October 
7−8 window closes

September 24−25 
window opens

September 24−25 
window closes

September 11−13 
window closes

September 11−13 
window closes

Hohmann RA:
Red: October 18
Blue: August 18

Figure 5 Polar plot of the RA angles of Callisto-Ganymede-JOI flyby windows. In
this case, the petals are separated by about 12.5 days and the angles nearly repeat
every 50 days. The Hohmann RA rotates about 5 degrees every 2 months, so the next
Callisto-Ganymede-JOI flyby sequence that is available for an interplanetary transfer
from Earth occurs after nearly two years.
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Double Flyby Navigation Results

We apply the delta-Delta-v method to double-satellite-aided capture trajectories to determine which trajec-
tories are the most feasible in terms of navigation. The most delta-v optimal cases, Ganymede and Io double
flyby sequences, are tabulated in Table 6. The most radiation tolerant sequences, Callisto and Ganymede
double-flyby sequences, are tabulated in Table 7. These results show that the flyby sequences that do not
have a JOI manuever before flybys are the most “navigationally feasible” if the trajectories are propagated
ballistically with no trajectory correction maneuvers.

Table 6 Error due to a 10-km Flyby Error in the First Flyby on the Second Flyby with JOI errors of
1%, km.

Perijove (RJ) 5 4 3 2 1

GIJ Io flyby error 82 69 60 53 47
GJI Io flyby error 140 150 150 130 110
IJG Ganymede flyby error 300 280 250 220 170
JIG Ganymede flyby error 370 350 300 230 150

Table 7 Error due to a 10-km Flyby Error in the First Flyby on the Second Flyby with JOI errors of
1%, km.

Perijove (RJ) 14 13 12 11 10 9

CGJ Ganymede flyby error (km) 240 210 180 170 150 140
CJG Ganymede flyby error (km) 530 600 650 680 700 700

GJC Callisto flyby error (km) 1500 1400 1400 1300 1300 1300
JGC Callisto flyby error (km) 6100 6300 6300 6100 5800 5400

TRIPLE SATELLITE-AIDED CAPTURE

Laplace Resonance Derivation

Ganymede, Europa, and Io are locked in a 1:2:4 orbital resonance known as the Laplace resonance.12 The
Laplace resonance constrains the three moons’s mean longitudes14, 15 by the relation:

180◦ = 2λGa − 3λEu + λIo (18)

where λIo is Io’s mean longitude, λEu is Europa’s mean longitude, and λGa is Ganymede’s mean longitude.

The Laplace resonance constrains the geometry of triple-satellite-aided capture trajectories involving Ganymede,
Europa, and Io such that some potential sequences cannot exist. However, the triple-flyby sequences that do
exist repeat every synodic period of Europa and Ganymede (7.0509 days). We determine which Laplacian
triple-flyby sequences can physically exist by performing a detailed phase angle analysis combined with the
patched-conic method previously discussed.

The Laplace resonance is the combined effect of several resonances. The following mean motion and
phasing resonances constrain the dynamics and positions of Io and Europa as follows:14

2nEu − nIo = $̇Io = $̇Eu ≈ −0.7395◦/day (19)

2λEu − λIo −$Io = 0◦ (20)

2λEu − λIo −$Eu = 180◦ (21)

12



where nIo is Io’s mean motion, nEu is Europa’s mean motion,$Io is Io’s longitude of perijove,$Eu is Europa’s
longitude of perijove, $̇Io is the precession rate of Io’s longitude of perijove, and $̇Eu is the precession rate
of Europa’s longitude of perijove.

Similarly, Europa and Ganymede are locked in a 1:2 orbital resonance with each other. In this case, only
Europa’s longitude of perijove participates in the resonance, while Ganymede’s longitude of perijove is not
constrained.

2nGa − nEu = $̇Eu ≈ −0.7395◦/day (22)

2λGa − λEu −$Eu = 0◦ (23)

where nGa is the mean motion of Ganymede and the other parameters have all been previously defined in
Equations (18) – (21). The Laplace resonance mean motion equation is derived by subtracting Equation (19)
from Equation (22).

2nGa − 3nEu + nIo = 0 (24)

We derive the Laplace resonance phasing equation by subtracting Equation (21) from Equation (23) (where
we note that any odd integer multiple of 180◦ will satisfy the equation):

m(180◦) = 2λGa − 3λEu + λIo (25)

where m is any odd integer (m = ...,−3,−1, 1, 3, ...). Subtracting Equation (20) from Equation (21) shows
that the longitudes of perijove of Europa and Io are locked in a separate resonance:

$Io = 180◦ −$Eu (26)

Laplace Resonance Phase Angle Analysis

The geometry of the Laplace resonance allows the position of any moon to be determined from the angle
between the other two moons (the phase angle). We define the phase angles between each set of moons as
the difference between the mean longitudes of each moon at a given time:

∆λEu,Io ≡ λIo − λEu (27)

∆λGa,Io ≡ λIo − λGa (28)

∆λGa,Eu ≡ λEu − λGa (29)

where ∆λEu,Io is the phase angle from Europa to Io; ∆λGa,Io is the phase angle from Ganymede to Io; ∆λGa,Eu
is the phase angle from Ganymede to Europa; and λIo, λEu, and λGa are the mean longitudes of Io, Europa,
and Ganymede, respectively. Next, we manipulate the Laplace resonance phasing equation to form relations
between each set of phase angles.
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Ganymede-Europa and Europa-Io phase angle relations. The relations between the phase angle between
Ganymede and Europa and the phase angle between Europa and Io are determined by first re-arraging terms
in Equation (18) to get

± 180◦ = 2λGa − 2λEu + λIo − λEu (30)

where the ± symbols denote two solutions. Equations (27) and (29) are substituted into Equation (30) to
form a relation between the two sets of phase angles:

± 180◦ = −2∆λGa,Eu + ∆λEu,Io (31)

We rearrange Equation (31) to solve for each phase angle in terms of the other:

∆λEu,Io = 180◦ + 2∆λGa,Eu (32)

∆λGa,Eu = ±90◦ + ∆λEu,Io/2 (33)

where the ± terms imply that there exist two possible ∆λGa,Eu solutions for a given value of ∆λEu,Io due to
the fact that ∆λEu,Io varies from 0◦ to 360◦ twice every period of the Laplace resonance while ∆λGa,Eu varies
at the same angular rate as the Laplace resonance.

Ganymede-Europa and Ganymede-Io phase angle relations. The Laplace resonance equation [Equation (25)]
with odd multiples of 180◦ is rearranged to form

{±180◦, 540◦} = 2λGa − 3λEu + λIo (34)

where {±180◦, 540◦} represents three odd multiples of 180◦ that are required to span the solution space.
Equation (28) is rearranged in terms of λIo as follows:

λIo = ∆λGa,Io + λGa (35)

Next, Equation (35) is substituted into Equation (34) to obtain

{±180◦, 540◦} = 3λGa − 3λEu + ∆λGa,Io (36)

where 3λGa − 3λEu can be replaced by −3∆λGa,Eu via Equation (29) to form

{±180◦, 540◦} = −3∆λGa,Eu + ∆λGa,Io (37)

Equation (37) is rearranged to solve for each phase angle in terms of the other. Remaining odd multiples
of 180◦ are then replaced by 180◦ to condense the equations. These operations result in the following:

∆λGa,Io = 3∆λGa,Eu + 180◦ (38)

∆λGa,Eu = {±60◦, 180◦}+ ∆λGa,Io/3 (39)

where the braced terms and the ± denote three solutions for ∆λGa,Eu for a given value of ∆λGa,Io. The three
solutions exist due to the fact that ∆λGa,Io varies from 0◦ to 360◦ three times every period of the Laplace
resonance while ∆λGa,Eu varies at the same angular rate as the Laplace resonance.
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Ganymede-Io and Europa-Io phase angle relations. We determine the relations between the Ganymede-
Io phase angle and the Europa-Io phase angle by using a substitution for λEu that is derived by rearranging
Equation (27):

λEu = λIo −∆λEu,Io (40)

Equation (40) is next substituted into the three-valued form of the Laplace resonance equation [Equa-
tion (34)]:

{±180◦, 540◦} = 2λGa − 2λIo + 3∆λEu,Io (41)

where 2λGa − 2λIo can be replaced by −2∆λGa,Io via Equation (28) to form

{±180◦, 540◦} = −2∆λGa,Io + 3∆λEu,Io (42)

This equation is rearranged to solve for each of phase angle in terms of the other:

∆λEu,Io = {±60◦, 180◦}+ 2∆λGa,Io/3 (43)

where the braced terms and the ± denote three solutions for ∆λGa,Eu for a given value of ∆λGa,Io.

∆λGa,Io = ±90◦ + 3∆λEu,Io/2 (44)

where the ± denotes two solutions for ∆λGa,Io for a given value of ∆λGa,Eu. These two sets of multi-valued
solutions occur because ∆λGa,Io varies from 0◦ to 360◦ three times every period of the Laplace resonance
while ∆λGa,Eu varies two times every period of the Laplace resonance. Interestingly, given any of the three
possible values of ∆λGa,Io, the relations can produce either of the two possible values of ∆λGa,Eu. Similarly,
given either of the two possible values of ∆λGa,Eu, the relations can produce any of the three possible values
of ∆λGa,Io.

Dynamics of the Laplace Resonance. The mean motion of the moons governs the dynamics of the Laplace
resonance by varying the mean longitudes over time. The mean longitudes of each moon can be written as
a function of time. After one full period of the Laplace resonance (7.0509 days), the angles can be reset to
their initial values:

λIo(t) = λIo,0 + nIot (45)

λEu(t) = λEu,0 + nEut (46)

λGa(t) = λGa,0 + nGat (47)

where λIo(t), λEu(t), and λGa(t) are the mean longitudes of the moons at time t; and λIo,0, λEu,0, and λGa,0 are
arbitrary initial conditions for the mean longitudes of the moons that satisfy the Laplace resonance equation
[Equation (25)].

We determine the phase angles between each set of moon over time, by finding the differences between
Equations (45) – (47). These time-varying phase angles can also be written in terms of the initial phase angles
and the differences in the mean motions of the moons:
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∆λEu,Io(t) = λIo(t)− λEu(t) = ∆λEu0,Io0 + (nIo − nEu)t (48)

∆λGa,Io(t) = λIo(t)− λGa(t) = ∆λGa0,Io0 + (nIo − nGa)t (49)

∆λGa,Eu(t) = λEu(t)− λGa(t) = ∆λGa0,Eu0 + (nEu − nGa)t (50)

where ∆λEu,Io(t), ∆λGa,Io(t), and ∆λGa,Eu(t) are the time-varying phase angles between each set of moons;
∆λEu0,Io0, ∆λEu0,Io0, and ∆λEu0,Io0 are the initial phase angles between the moons that are constrained by
Equations (32) – (39); and t is the time elapsed after the initial phase angles occur.

Given the difference between the mean longitudes of any two moons at two known times, the phase angles
between all three moons can be calculated for both times. We apply this technique to the Laplace triple-
satellite-aided capture problem by determining the position of the third moon after the first two moon flybys
and analyzing if the trajectory passes near it. The phase angle between a set of moons at two different times
is defined using the time of flight of the spacecraft as it transfers from one moon to the other:

∆fEu,Io = ∆λEu1,Io2 = λIo(t2)− λEu(t1) = λIo,1 + nIo(T1,2)− λEu,1 (51)

where ∆fEu,Io is the difference of the true anomalies of Europa and Io calculated from Equations (4) – (5),
∆λEu1,Io2 is the phase angle from Europa at time t1 to Io at time t2, and T1,2 is the time of flight from the
outer moon to the inner moon. If Ganymede and Io are encountered first, we substitute Ga for Eu in the
expression. Similarly, if Ganymede and Europa are encountered first, we substitute Ga for Eu and Eu for
Io in the expression. For sequences that begin past the spacecraft’s perijove, the phase angles between each
inner moon at time t1 to each outer moon at time t2 can be calculated using the same method.

The primary advantage of these relations is that the phase angle difference is equivalent to the difference
of the true anomalies of the moons that we calculated earlier in Equations (4) – (5). Hence, the phase angle
relations that were derived from the Laplace’s astronomical research12 can be applied to the trajectory design
of the moon-to-moon transfers of triple-satellite-aided capture sequences. All that remains to be determined
is the initial phase angle of the third moon. We can determine this angle from the phase angle between the
first two moon encounters by using the mean motion and time of flight relations. First, the phase angles of all
three moons at both times need to be determined:

∆λEu1,Io1 = ∆λEu1,Io2 − nIo(T1,2) (52)

∆λEu2,Io2 = ∆λEu1,Io1 + (nIo − nEu)(T1,2) (53)

Once the Europa-Io phase angles at both times are calculated, the Ganymede-Io and Ganymede-Europa
phase angles can be determined using Equations (33) and (44). Similarly, if the Ganymede-Io or Ganymede-
Europa phase angles at different times are given, Equations (52) and (53) are modified to calculate the phase
angles at both times. Next, Equations (32), (38), (39), and (43) are used to calculate the remaining phase
angles.

Finally, the time of flight from the second moon to the third moon at two different times is used to determine
the third moon’s phase angle at the time that the spacecraft passes its orbit:

∆λGa3,Io2 = ∆λGa2,Io2 − nGa(T2,3) (54)

If this phase angle is equal to the difference in the true anomalies of the two encounters, then the triple-
satellite-aided capture sequence is physically possible:
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∆λGa3,Io2(Ein, Rp,in) = ∆fGa3,Io2(Ein, (Rp,in)) (55)

Both angles are determined by the same set of initial conditions, the input orbital energy (or V∞) and target
perijove. If the angles are not the same, both parameters will have to be varied until the equality is met. For
the multi-valued phase angle functions, only one of the phase angles must be equal to the difference in the
true anomalies.

The V∞ range is constrained by the set of possible interplanetary trajectories from Earth to Jupiter. We
search a V∞range from 0 km/s to 7 km/s to account for the majority of ballistic interplanetary trajectories
and low-thrust trajectories which can arrive at Jupiter with low V∞ or even elliptical orbits.11 Similarly,
we constrain the target perijove so that it is above Jupiter’s surface (1 RJ) and below Io’s orbit (5.9 RJ).
If no trajectory can be found for a particular sequence throughout the entire range, the capture sequence is
considered to be physically impossible.

Patched-Conic, Laplacian Triple-Satellite-Aided Capture Results

We determine the potential Laplacian triple-satellite-aided capture sequences by analyzing possible se-
quences that contain a JOI maneuver at perijove and flybys of Io, Europa, and Ganymede. Each of these
sequences is then tested using the Laplace resonance phase angle analysis from the previous section. If a
sequence exists, its required perijove and JOI delta-v are recorded. Otherwise, the sequence is recorded as an
impossible sequence.

Table 8. Laplace Resonance Capture Sequencesa

Flyby Sequences Existence Uniqueness JOI ∆V, m/s Perijove Radius, RJ

GEIJ No — — —
GEJI Yes Yes 213 1.15
GIJE Yes Yes 254 2.16
GJIE No — — —
EIJG No — — —
EJIG Yes Yes 244 2.11
IJEG Yes Yes 245 1.15
JIEG No — — —

a V∞ is 5.6 km/s and flyby altitudes are 300 km.

Table 8 shows that only half of the potential Laplace resonance flyby sequences are physically realizable,
and these sequences all have very low perijoves that are deep within Jupiter’s radiation zone. It should also
be noted that all of the physically possible sequences have a JOI manuever between the moon flybys, which
poses navigational and operational challenges.

Figure 6 shows a possible Ganymede-Io-JOI-Europa (GIJE) sequence, while Figure 7 shows why Ganymede-
Europa-Io-JOI (GEIJ) sequences are impossible—Io will always be on the other side of Jupiter from its
required position. No amount of varying the incoming V∞ or target perijove will modify the trajectory sub-
stantially enough overcome this problem. The geometry of the Laplace resonance definitively precludes this
flyby sequence from existing.

The two sequences shown in Figures 6 and 7 have symmetric sequences with similar characteristics that
are palindromes of the the original sequences. For instance, the GIJE and EJIG sequences are similar in
perijove radius and geometry; the GEJI and IJEG sequences are also similar in perijove radius and geometry.
The two sets of impossible sequences also occur in palindrome pairs: GEIJ and JIEG, and EIJG and GJIE.
This property is due to the fact that all of the trajectories capture into long-period, 200-day orbits that are
qualitatively similar to the hyperbolic arrival asymptotes.
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Figure 6 A Ganymede-Io-JOI-Europa sequence with a perijove of 2.16 RJ, a V∞ of
5.6 km/s, flyby altitudes of 300 km, and a ∆VJOI of 213 m/s. The Laplace resonance
permits two other positions for Europa, but neither results in an encounter.
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Figure 7 This Ganymede-Europa-Io-JOI flyby sequence is physically impossible be-
cause Io will always be located on the opposite side of Jupiter from where the trajec-
tory passes Io’s orbit. Varying the V∞ or perijove does not change this conclusion.
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Near Resonance Analysis for Callistan Triple-Satellite Aided Capture

Callisto is not in an exact resonance with the three other moons, so triple-satellite-aided capture sequences
involving Callisto occur aperiodically rather than every 7.055 days. However, near-resonances can be found in
the synodic periods of the tranfers that allow some prediction of when Callistan triple-satellite-aided capture
can occur. Fortuitously, the synodic period of a Callisto-Ganymede transfer is nearly commensurate with the
synodic period of a Ganymede-Io transfer:

SCa,Ga

SGa,Io
=

12.5232 days
2.3503 days

= 5.3283 ≈ 5.3333... =
16

3
(56)

where SCa,Ga is the synodic period of a Callisto-Ganymede transfer, SGa,Io is the synodic period of a
Ganymede-Io transfer, and 16/3 is the lowest near-resonance to the ratio of the synodic periods. Since this
resonance is imperfect, there is a mismatch every period of the resonance:

MCa,Ga,Io = 16SGa,Io − 3SCa,Ga = 0.0352 days (57)

where MCa,Ga,Io is the mismatch time in the near resonance per resonance period. This value can be multi-
plied by Callisto’s mean motion and Callisto’s orbital circumference to determine the approximate mismatch
distance:

xCa,Ga,Io ≈MCa,Ga,IonCa(2πaCa) = 24900 km (58)

where xCa,Ga,Io is the approximate mismatch distance between the position of Callisto after one period of the
near resonance, nCa is the mean motion of Callisto, and aCa is the semi-major axis of Callisto’s orbit.

The mismatch can be corrected by varying the perijove of the sequence. However, the perijove can only
be varied between Jupiter’s surface (1 RJ) and Io’s orbital semi-major axis(5.9 RJ) which limits the solution
space of available trajectories. Callisto-Ganymede-Io-JOI and JOI-Io-Ganymede-Callisto trajectories occur
for several near resonance periods producing a “flyby window,” then no trajectory of that type will exist until
the next flyby window. This behavior is due to the fact that these trajectories have three flybys in a row before
or after perijove, so small variations in perijove only produce small variations in the B-plane parameters of
the next flyby.

The next flyby window occurs when the near-resonance mismatches compound for so long that they be-
come greater than one-sixteenth of Callisto’s orbital circumference. This allows the next flyby window to
open with a ±SGa,Io offset from the previous near-resonance period. We estimate the time between the be-
ginning of one flyby window and the beginning of the next by multiplying the approximate near-resonance
period by one-sixteenth of Callisto’s orbital circumference, and dividing by the mismatch distance:

SCa,Ga,Io ≈
16SGa,Io(2πaCa/16)

xCa,Ga,Io
= 1110 days = 3.05 years (59)

where SCa,Ga,Io is the approximate “synodic period” between the two Callisto-Ganymede-Io-JOI (or JOI-Io-
Ganymede-Callisto) trajectories with approximately equivalent perijoves.

On the other hand, Callisto, Ganymede, and Io sequences that have JOI in-between flybys allow a small
variation in perijove to cause a much greater variation the B-plane parameters of the next flyby. Consequently,
these trajectories occur much more frequently, once or twice every near-resonance period.

Patched-Conic Callistan-Triple-Satellite-Aided Capture Results

The aperiodicity also allows all Callistan triple-satellite-aided capture sequences to exist (unlike some
of the Laplacian sequences), and also allows a broader range of perijove distances. We employ a similar
patched-conic method to that of the double-satellite-aided capture sequences to determine the ∆V required
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for Callistan triple-satellite-aided capture sequences. The only difference is that an additional flyby is mod-
eled, so the capture ∆V is lower.

The Callistan triple-satellite-aided capture sequences that require the least ∆V are Callisto-Ganymede-
Io sequences. These sequences take advantage of Io’s position deep within Jupiter’s gravity well and the
large masses of Ganymede and Callisto. (Ganymede and Callisto are the first and third most massive moons
in the Solar System, respectively.) We list the eight different permutations for Callisto-Ganymede-Io flyby
sequences and their ∆V versus perijove in Table 9.

Table 9. ∆V for Callisto, Ganymede, and Io Capture Sequencesa, m/s

JOI (5 RJ) JOI (4 RJ) JOI (3 RJ) JOI (2 RJ) JOI (1.01 RJ)
Flyby Sequences ∆V, m/s ∆V, m/s ∆V, m/s ∆V, m/s ∆V, m/s

CGIJ 208 236 248 236 191
CGJI 203 234 247 236 191
CIJG 211 236 248 236 191
CJIG 205 234 247 235 191
GIJC 207 233 246 234 190
GJIC 202 232 245 234 190
IJGC 210 234 246 234 190
JIGC 204 232 245 234 190

a V∞ is 5.6 km/s and flyby altitudes are 300 km.

The Callisto-Ganymede-Io sequences encounter the same radiation field as all of the other Io sequences,
so a method of avoiding radiation is to use Callisto-Ganymede-Europa sequences. These sequences are much
less ∆V efficient than the Callisto-Ganymede-Io sequences and are comparable in ∆V cost to Ganymede-Io
double flyby sequences, but they can avoid the radiation to some degree (although not as much as Callisto-
Ganymede sequences). The ∆V versus perijove of these sequences are tabulated in Table 10 for perijoves
greater than Io’s orbital radius.

Table 10. ∆V for Callisto, Ganymede, and Europa Capture Sequencesa, m/s

JOI (9 RJ) JOI (8 RJ) JOI (7 RJ) JOI (6 RJ)
Flyby Sequences ∆V, m/s ∆V, m/s ∆V, m/s ∆V, m/s

CGEJ 360 330 347 359
CGJE 330 321 342 356
CEJG 360 331 346 358
CJEG 336 322 341 354
GEJC 358 326 343 355
GJEC 331 318 337 351
EJGC 358 328 342 354
JEGC 341 319 337 350

a V∞ is 5.6 km/s and flyby altitudes are 300 km.

The remaining types of Callistan triple-satellite-aided capture sequences are Callisto-Europa-Io sequences.
However, these sequences are substantially less ∆V efficient than Callisto-Ganymede-Io sequences in ∆V
and do not offer the radiation avoidance benefits of Callisto-Ganymede-Europa sequences.

Integrated Triple-Satellite-Aided Capture

We construct triple-satellite-aided capture sequences in STK by adding an extra flyby to double-satellite-
aided capture sequences. A double-satellite-aided capture sequence is converged for the first two moons in the
three-moon sequence. Then, the trajectory is propagated as usual, and the distance between the spacecraft’s
nominal trajectory and the third moon is observed. If the third moon is sufficiently close to the nominal
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trajectory, the target radius of perijove, the ∆VJOI, or the B-plane parameters of the second flyby can be
manually varied to get an optimal three-moon sequence.

Integrated Callistan Triple-Satellite-Aided capture. Callistan triple-satellite-aided capture sequences oc-
cur aperiodically, so we search for them by converging double-satellite-aided capture sequences for the first
two moons every synodic period (as seen in Table 2) or by using the near-resonance analysis. Once the third
moon is sufficiently close to the double-satellite-aided capture trajectory, manually varying the input param-
eters allows the B-plane of the third moon to be targeted which creates an optimal Callistan satellite-aided
capture trajectory.

The near-resonance of the sequences involving Callisto, Io, and Ganymede determines the existence and
perijoves of Callisto-Ganymede-Io-JOI and JOI-Io-Ganymede-Callisto sequences over time. Figure 8 shows
that JOI-Io-Ganymede-Callisto opportunities tend to decrease in perijove over time until they reach approxi-
mately Jupiter’s radius and then there is a 1.5 year gap before the next window opens. We call this behavior a
“descending staircase” pattern. Similarly, Callisto-Ganymede-Io-JOI sequences follow a similar pattern, ex-
cept that they tend to increase in perijove over time rather than decrease. We call this behavior an “ascending
staircase” pattern.
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Figure 8 Two flyby windows for JOI-Io-Ganymede-Callisto satellite-aided capture
sequences. These sequences follow a “descending staircase” pattern (i.e. a year-long
window of JOI-Io-Ganymede-Callisto trajectories exist with perijoves decreasing over
time. After that year, no trajectory exists for a two-year gap until another year-long
window opens.)

As illustrated in Figure 9, Callisto-Ganymede-JOI-Io sequences occur more frequently than the previous
two sequences because there is a JOI maneuver in-between the flybys. There are two opportunities per near-
resonance period, and a similar ascending behavior increases the perijoves of the two separate opportunities
over time. Additionally, the frequency of Io-JOI-Ganymede-Callisto sequences is also about two oppor-
tunities per near-resonance period. Also, the perijoves of each of the two separate opportunities follow a
decreasing rather than increasing behavior over time.

We assume without direct integration that the other four Callisto, Ganymede, Io flyby sequences behave
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similarly to the first four. The other two sets of Callistan-satellite-aided capture—Callisto, Ganymede, and
Europa; and Callisto, Europa, and Io—do not have a convenient near-resonance, so it is likely that they do
not exhibit a clear pattern.
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Figure 9 Eight successive flybys that illustrate the general behavior of Callisto-
Ganymede-JOI-Io satellite-aided capture sequences. Like the Callisto-Ganymede-Io-
JOI sequence, the Callisto-Ganymede-JOI-Io sequence’s perijoves trend upward over
time. However, there are two available trajectories every 37 days rather than only one,
and it appears that a trajectory always exists.

Integrated Laplacian Triple-Satellite-Aided Capture. Laplacian triple-satellite-aided capture sequences in-
volving Io, Europa, and Ganymede only occur once every period of the Laplace resonance (7.0509 days). The
previous patched-conic analysis proved that there are only four geometric configurations of the moons that
produce optimal satellite-aided capture sequences. Even these four configurations are constrained by a very
tight range of perijoves. Hence, the target perijoves must be manually varied in order to obtain sequences that
do not require an excessive amount of ∆V to target the final flyby. These three-moon encounters are rarely
in the same plane. Thus, the trajectory requires at least one component of the JOI manuever or a suboptimal
B-plane angle to target the plane of the post-JOI flybys. If the B-plane angle deviation or the JOI out-of-plane
component becomes large, the JOI maneuver becomes suboptimal.

Once we converge a particular Laplacian triple-satellite-aided capture sequence, we can find other se-
quences by changing the input epoch by about 7 days and allowing the targeter to re-converge. Thoroughly
searching through these sequences every 7 days allows Laplacian triple-satellite-aided capture sequences to
be found that either perform an extra gravity assist at Callisto, align with an ideal interplanetary trajectory, or
both (under rare circumstances).

Triple Flyby Navigation Results

Results from the delta-Delta-v method indicate geometrically increasing flyby errors at each subsequent
satellite encounter; thus, navigating triple-satellite-aided capture trajectories poses a difficult challenge. The
first flyby causes a significant error in the second flyby, which, in turn, causes an extreme error in the third
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flyby. The flyby error results for the Callisto, Io, and Ganymede sequences (which provide the lowest ∆V
for triple-satellite-aided captures) are tabulated in Table 12. For example, the first entry in the table, 110 km,
corresponds to the Ganymede flyby error that was caused by a 10 km error in the Callisto flyby of a Callisto-
Ganymede-Io-JOI sequence with a perijove of 5 RJ. The entry directly below, 880 km, corresponds to the
error in the Io flyby in the same sequence that was caused by the first two flybys of Callisto and Ganymede.
The results for the four existent Laplacian triple-satellite-aided capture sequences are tabulated in Table 11.

Table 11 Flyby Errors due to a 10-km Flyby Error in the First Flyby on the Two Subsequent Flybysa,
km

Sequence Perijove (RJ) Second Flyby Third Flyby

GEJI 1.15 31 −120
GIJE 2.16 54 −390
EJIG 2.15 84 420
IJEG 1.11 66 210

aLaplace resonance cases (Io, Europa, and Ganymede).

Table 12 Flyby Errors due to a 10-km Flyby Error in the First Flyby on the Two Subsequent Flybysa,
km

Perijove 5 RJ 4 RJ 3 RJ 2 RJ 1 RJ

CGIJ Ganymede flyby 110 100 94 88 82
CGIJ Io flyby 880 690 570 470 380b

CGJI Ganymede flyby 110 100 94 88 82
CGJI Io flyby −1300 −1200 -1000 -880 -700

CIJG Io flyby 180 170 150 140 130
CIJG Ganymede flyby −3000 −2200 −1700 −1300 −970

CJIG Io flyby 240 250 240 220 200
CJIG Ganymede flyby 2500 1800 1300 1000 740

GIJC Io flyby 82 69 60 53 47
GIJC Callisto flyby 3200 2200 1600 1200 910

GJIC Io flyby 140 150 150 130 110
GJIC Callisto flyby 3800 2900 2300 1700 1200

IJGC Ganymede flyby 300 280 250 220 170
IJGC Callisto flyby 5600 4700 3900 3100 2200

JIGC Ganymede flyby 370 350 300 230 150
JIGC Callisto flyby 4100 3500 2800 2000 1200
aNon-resonant cases (i.e involving Callisto).
bThis is the smallest error at Io; the Ganymede flyby error
was 82 km and the Io flyby error was 380 km.

These ballistically propagated results show that a successful implementation of these triple-flyby sequences
requires either an extremely accurate nominal trajectory or active autonomous navigation techniques. We note
that these errors scale nearly linearly. If the first flyby error could be reduced to 1 km, each of the following
flyby errors could be decreased by a factor of approximately one-tenth.
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QUADRUPLE-SATELLITE-AIDED CAPTURE

Patched Conic Quadruple-Satellite-Aided Capture

The Laplace resonance constrains quadruple-satellite-aided capture sequences to only occur when Callisto
is encountered before or after one of the four physically possible Laplacian triple-satellite-aided capture
sequences. Due to the restrictive constraints on Callisto’s position, optimal quadruple-satellite-aided capture
sequences are rare. However, a patched-conic analysis can still be done to determine the required ∆V for
such sequences. An extra Callisto gravity assist just needs to be modeled before or after a complete Laplacian
triple-satellite-aided capture sequence. There exist four Laplacian triple-flyby sequences, and a Callisto flyby
is allowed before or after each sequence; therefore, eight quadruple-satellite-aided capture sequences exist.
The ∆V of these sequences, their required perijoves, and the perijoves of the final orbits are tabulated in
Table 13.

Table 13. Quadruple-Satellite-Aided Capture Sequencesa

Flyby Sequences JOI ∆V, m/s Perijove Radius, RJ Final Orbit Perijove Radius, RJ

CGIJE 175 2.16 2.08
CEJIG 177 2.11 1.77
GIJEC 175 2.16 1.61
EJIGC 176 2.11 1.34
CGEJI 160 1.15 1.10
CIJEG 161 1.15 0.91
GEJIC 159 1.15 0.79
IJEGC 160 1.15 0.64

a V∞ is 5.6 km/s and flyby altitudes are 300 km.

Integrated Quadruple-Satellite-Aided Capture

As mentioned in the previous section, we find integrated quadruple-satellite-aided capture sequences by
searching through all occurrences of each type of Laplacian triple-satellite-aided capture, and observing when
these trajectories come within about 30,000 km of Callisto. Once such a trajectory is found, several parame-
ters must be manually modified to allow the trajectory to properly target a reasonably optimal Callisto flyby.
Callisto’s B · R can be targeted by adding an out-of-plane component to the JOI maneuver or forcing the
previous flyby to have a suboptimal B-plane angle. Callisto’s B · T can be targeted by manually varying the
target radius of perijove and changing the anti-velocity component of the JOI manuever. These variations
modify the capture orbit from the standard 200-day orbit used in all the other cases, but are usually necessary
to converge a quadruple-satellite-aided capture trajectory.

A sample integrated quadruple-satellite-aided capture trajectory occurs in September of 2022 and is classi-
fied as a Ganymede-Io-JOI-Europa-Callisto capture sequence. This trajectory was discovered by converging
Ganymede-Io-JOI-Europa capture sequences until Callisto passed within about 30,000 km of the trajectory.
The search began by finding Ganymede-Io-JOI-Europa sequences that occur over the arrival window from
September 2020 to September 2022. The fact that only one quadruple-satellite-aided capture sequence of
either of two particular types (Callisto-Ganymede-Io-JOI-Europa or Ganymede-Io-JOI-Europa-Callisto) was
found in a two-year period attests to their infrequency.

The STK trajectory had six significant events: the initial state, the Ganymede flyby, the Io flyby, the JOI
maneuver, the Europa flyby, and the Callisto flyby. The initial state is characterized by a hyperbolic six-state
and initial time given by Table 14. We characterize the flybys in Table 15 by B-plane parameters, flyby
altitude, B-plane angle, and time. The JOI maneuver is characterized by its ∆V and azimuth angle and the
capture orbit period in Table 16.

The integrated Ganymede-Io-JOI-Europa-Callisto sequence was 30 m/s more costly than an equivalent
patched-conic trajectory. The primary causes of this inefficiency are the out-of-plane errors in the Europa
flyby and gravity losses due to the finite-burn JOI maneuver.
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Table 14. Integrated GIJEC Flyby Sequence: Initial State

Initial Time (UTC) Target Rp (RJ) V∞ (km/s) RA (deg) Dec. (deg) Vazimuth,p TA (deg)

21 Sept 2022 5:14 2.5045 5.600 344.99 -0.4481 92.3192 209.09

Table 15. Integrated GIJEC Flyby Sequence: Flyby Parameters

Flyby Times (UTC) Flyby Body Altitude(km) Θ (deg) B ·R (km) B · T (km)

24 Sept 2022 17:13 Ganymede 300.3 0.0 0.0 2972
25 Sept 2022 3:46 Io 255.8 0.0 0.0 2100

25 Sept 2022 16:15 Europa 245.7 134.7 1293 -1281
26 Sept 2022 18:06 Callisto 276.3 180.0 0.0 -2700

Quadruple Flyby Navigation Results

Quadruple-satellite-aided capture sequences are notably less sensitive to flyby errors than many of the
triple-satellite-aided capture sequences due to the fact that they only occur at low perijoves. However,
quadruple-flyby sequences still require active trajectory corrections between flybys in order to ensure that
the final flybys are targeted correctly. Table 17 shows the propagation of errors for all of the quadruple-
satellite-aided capture sequences.

DISCUSSION

We emphacize that the integrated trajecories presented here are purely deterministic. Our intent is to
demonstrate the physical realizability of multiple-satellite-aided capture. If we had not demonstrated the
existence of such trajectories, further analysis would not be indicated. However, due to the significant benefit
that these capture trajectories offer, the question of whether they can be made feasible from a navigation and
mission operation perspective may be worth further study. In this paper, we have ignored many important
issues that must be resolved including the statistical effects of errors in flyby conditions, non-gravitational
forces, spacecraft maneuver errors (in particular ∆VJOI magnitude and pointing errors), ephemeris errors, etc.
Clearly, those issues are beyond the scope of the present study.

CONCLUSIONS

Several types of multiple-satellite-aided capture trajectories (with two, three, and four satellites) have been
computed with a high-fidelity propagation model. A rough δ(∆V ) analysis was used to approximate the
sensitivities of these trajectories to small flyby errors. Based on this analysis, we conjecture that if the first
flyby (of many of these sequences) could be targeted to an accuracy of within 1 km of the nominal trajectory,
then the use of such capture sequences may become practical.

The ∆V savings of these multiple-satellite-aided capture over unaided capture range from 210 m/s at
about 1 RJ to 847 m/s at 14 RJ. The triple-satellite-aided capture case includes four unique solutions for
Ganymede, Europa, and Io sequences that were derived from the Laplace resonance. In contrast, the non-
resonant Callistan satellite-aided capture sequences have a continuum of possible solutions, but most of the
sequences occur less frequently than the Laplace-resonant sequences.

It is expected that significant advantages in navigation and spacecraft control will be necessary to realize

Table 16. Integrated GIJEC Flyby Sequence: Jupiter Orbit Insertion

JOI Time (UTC) Rp (RJ) ∆V (m/s) Orbit Period (days) JOI duration (s) JOI az. (deg)

25 Sept 2022 8:05 2.1439 220.3 167.6 1032.41 -160.6
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Table 17. Error due to a 10-km Flyby Error in the First Flyby on the Three Subsequent Flybys, km

Sequence Perijove (RJ) Second Flyby Third Flyby Fourth Flyby

CGEJI 1.15 83 260 -960
CGIJE 2.16 89 480 -2600
CEJIG 2.11 120 -540 -3800
CIJEG 1.15 130 -610 -2100
GEJIC 1.15 31 -140 -1700
GIJEC 2.16 54 -360 -4400
EJIGC 2.11 72 350 3000
IJEGC 1.15 89 190 1600

the significant ∆V (and therefore propellant) savings that multiple-satellite-aided capture promises.
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