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BROAD-SEARCH ALGORITHMS FOR THE SPACECRAFT
TRAJECTORY DESIGN OF CALLISTO-GANYMEDE-IO TRIPLE

FLYBY SEQUENCES FROM 2024-2040, PART II: LAMBERT
PATHFINDING AND TRAJECTORY SOLUTIONS

Alfred E. Lynam∗

Triple-satellite-aided capture employs gravity-assist flybys of three of the Galilean
moons of Jupiter in order to decrease the amount of ∆V required to capture a
spacecraft into Jupiter orbit. Similarly, triple flybys can be used within a Jupiter
satellite tour to rapidly modify the orbital parameters of a Jovicentric orbit, or to
increase the number of science flybys. In order to provide a nearly comprehen-
sive search of the solution space of Callisto-Ganymede-Io triple flybys from 2024
to 2040, a third-order, Chebyshev’s method variant of the p-iteration solution to
Lambert’s problem is paired with a second-order, Newton-Raphson method, time
of flight iteration solution to the V∞-matching problem. The iterative solutions of
these problems provide the orbital parameters of the Callisto-Ganymede transfer,
the Ganymede flyby, and the Ganymede-Io transfer, but the characteristics of the
Callisto and Io flybys are unconstrained, so they are permitted to vary in order to
produce an even larger number of trajectory solutions. The vast amount of solu-
tion data is searched to find the best triple-satellite-aided capture window between
2024 and 2040.

INTRODUCTION

Gravity-assist flybys of planets and moons have been used on several interplanetary missions to
reduce the propellant mass and ∆V required to accomplish the missions’ objectives. Specifically,
the Galileo[1]–[4] and Cassini[5]–[8] missions used gravity-assist flybys of the inner planets to
reach their outer planet destinations and performed numerous flybys of the moons of Jupiter and
Saturn. The Galileo mission also used an Io gravity assist to reduce the amount of ∆V required
to capture into Jupiter orbit by 175 m/s.[3] This concept of using gravity-assist flybys of one or
more massive moon to capture a spacecraft into planetary orbit is termed “satellite-aided capture”
and has been studied by several investigators.[9]–[21] Triple-satellite-aided capture sequences using
Callisto, Ganymede, and Io have the potential to provide trajectory solutions that globally minimize
the amount of ∆V required to capture into orbit about Jupiter.[19, 22] Unfortunately, geometric
constraints make these triple flyby trajectories difficult to design because they can only occur when
Callisto, Ganymede, and Io are properly aligned. While Part I[23] focused on heuristically pruning
the solution space using these geometric constraints, this paper concentrates on employing Lam-
bert’s problem and V∞-matching to solve for trajectory solutions within the reduced solution space.
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Lambert’s problem is an orbital boundary value problem that involves the calculation of the conic
trajectory between two position vectors with a specified time of flight. Numerous investigators[24]–
[28] have proposed solutions to this problem, but we employ a third-order, Chebyshev method
variant of the p-iteration technique developed by Herrick and Liu[24]. However, the triple flyby
problem is not an exact analog to Lambert’s problem since only the position vector and flyby time of
Ganymede (the second flyby in the triple flyby) are fixed. In order to even pose Lambert’s problem in
this case, the times of flight of the transfers must coincide with the positions of Callisto and Io before
and after the Ganymede flyby. The V∞- or C3-matching problem must thus be solved in unison with
Lambert’s problem in order to find the triple flyby solutions. The V∞- or C3-matching problem has
also been investigated in the context of gravity-assist tour design by several authors.[28, 29, 30] In
this paper, we employ a second-order, Newton-Raphson method, time of flight iteration solution to
the V∞-matching problem that matches the incoming and outgoing V∞ of the Ganymede flyby, and
ensures that the Ganymede flyby has an altitude of 300 kilometers.

METHODOLOGY

Third-order, Chebyshev-method, p-iteration Lambert solution

Collection of Input Data The first step in the solution process is to extract ephemeris data for
Ganymede, Callisto, and Io for the times determined to be feasible from the heuristic pruning in Part
I.[23] The first extraction in Part I only extracted the position vectors of the three moons because
they were sufficient to find the phase angles between the moons. This second extraction is now
necessary because the velocity vectors of the moons are also needed to find the Lambert solutions.
In addition to the ephemerides, the initial guesses for pCa,Ga, pGa,Io, TCa,Ga, and TGa,Io are extracted
from the interpolation structures via the phase angles that were calculated from the ephemerides
(∆λephem,Ca,Ga and ∆λephem,Ga,Io). Fig. 1 depicts the Callisto-Ganymede and Ganymede-Io phase
angles. In summary, the data inputs to the Lambert-solving and V∞-matching problem are the time
of the Ganymede flyby; the position and velocity vectors of Callisto, Ganymede, and Io at that
time; and the initial guesses for the semilatus recta and transfer times of the Callisto-Ganymede and
Ganymede-Io orbital transfers (pCa,Ga, pGa,Io, TCa,Ga, and TGa,Io).

Posing Lambert’s problem. In order to find the Lambert solutions, the data inputs first need to
be converted into well-posed, orbital two-point boundary value problems. The ephemeris data for
Callisto and Io are valid only at the time of the Ganymede flyby, so Callisto’s position must be
backward-propagated to the time of the Callisto flyby and Io’s position must be forward-propagated
to the time of the Io flyby. In order to perform the propagations, the mean anomalies of Callisto and
Io at the time of the Ganymede flyby are calculated using the position and velocity vectors from
the ephemeris data. Next, the mean anomalies of Callisto and Io at their respective flyby times are
propagated using the initial guesses for the transfer times (TCa,Ga and TGa,Io):

MCa(tCa) = MCa(tGa)− nCaTCa,Ga (1)

MIo(tIo) = MIo(tGa) + nIoTGa,Io (2)

2



Ga,Io  

Position of Io at time of 

Ganymede flyby. 

Ca,Ga  

Position of Callisto 

at time of 

Ganymede flyby. 

Position of Callisto at 

time of Callisto flyby. 

Position of Io at 

time of Io flyby. 

Figure 1. A geometric definition of the Callisto-Ganymede and Ganymede-Io phase
angles for a Callisto-Ganymede-Io triple flyby.
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whereMCa(tCa) andMIo(tIo) are the mean anomalies of Callisto and Io, respectively, at the times of
the spacecraft’s flybys of Callisto and Io, respectively, MCa(tGa) and MIo(tGa) are the mean anoma-
lies of Callisto and Io at the time of the spacecraft’s flyby of Ganymede, and nCa and nIo are the
mean motions of Callisto and Io, respectively. Because Callisto and Io have small orbital eccentric-
ities (0.0074 and 0.0041, respectively), a fifth-order expansion of an equation of the center[31] is
used to solve Kepler’s equation for the eccentric anomaly propagations in order to avoid iterations.

Emoon = Mmoon + emoon sinMmoon + 1
2e

2
moon sin 2Mmoon

+1
8e

3
moon (3 sin 3Mmoon − sinMmoon) + 1

6e
4
moon (2 sin 4Mmoon − sin 2Mmoon)

+ 1
384e

5
moon (125 sin 5Mmoon − 81 sin 3Mmoon + 2 sinMmoon)

where Emoon and Mmoon are the eccentric and mean anomalies of Callisto or Io at the times of the
spacecraft’s respective flybys and emoon is the eccentricity of Callisto or Io’s orbit about Jupiter.
Now that the eccentric anomaly is calculated, the position and velocity vectors of Callisto and Io
at the times of the flybys are directly calculated from the eccentric anomaly version of Gauss’s f
and g functions.[31] Once the propagations using the f and g functions are complete, two Lambert’s
problems can be posed: the Lambert problem for the Callisto-Ganymede transfer is posed by the
Callisto and Ganymede position vectors and the Lambert problem for the Ganymede-Io transfer is
posed by the Ganymede and Io position vectors. The initial guesses for the transfer times TCa,Ga and
TGa,Io complete the posing of the two Lambert’s problems.

Solving Lambert’s problem. Since Lambert’s problem is now well posed for both the Callisto-
Ganymede transfer and the Ganymede-Io transfer, it can be solved using a variant of the p-iteration
technique developed by Herrick and Liu[24] and elaborated on by Bate et al.[32]. As in Bate et al.,
the semimajor axes of the orbital transfers are calculated from the semilatus rectum guesses pCa,Ga
and pGa,Io:

a =
mkp

(2m− `2) p2 + 2k`p− k2
(3)

where

k = r1r2 (1− cos ∆ν) (4)

` = r1 + r2 (5)

m = r1r2 (1 + cos ∆ν) (6)

where r1 is the orbital radius of the first moon in the transfer (Callisto or Ganymede), r2 is the
orbital radius of the second moon in the transfer (Ganymede or Io), and ∆ν is the angle between
the two radius vectors. Next, we calculate the f and g functions using the true anomaly formulas:

f = 1− r2 (1− cos ∆ν) /p (7)
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g =
r1r2 sin ∆ν
√
µJupp

(8)

ḟ =
√
µJup/p tan ∆ν/2

(
1− cos ∆ν

p
− 1

r1
− 1

r2

)
(9)

ġ = 1− r1 (1− cos ∆ν) /p (10)

where µJup is the gravitational parameter of Jupiter. Since the Callisto-Ganymede and Ganymede-
Io orbital transfers could be either elliptical or hyperbolic, the change in either eccentric or hyper-
bolic anomaly for the transfer is calculated using the following equations:

sin ∆E =
−r1r2ḟ√
µJupa

(11)

cos ∆E = 1− r1(1− f)/a (12)

cosh ∆H = 1− r1(1− f)/a (13)

where ∆E is the change in the eccentric anomaly for elliptical transfers and ∆H is the change in
the hyperbolic anomaly for hyperbolic transfers. The nominal transfer times associated with the
guess values for pCa,Ga and pGa,Io are calculated next:

Tnom,ellip = g +
√
a3/µJup (∆E − sin ∆E) (14)

Tnom,hyper = g +
√
−a3/µJup (sinh ∆H −∆H) (15)

where Tnom,ellip is the nominal time of flight for an elliptical transfer and Tnom,hyper is the nominal
time of flight for a hyperbolic transfer. These nominal times of flight are not in general equal to
TCa,Ga or TGa,Io, which is why Lambert’s problem requires the iteration of pCa,Ga and pGa,Io to solve.
We use a third-order, Chebyshev’s method, p-iteration equation:[33]

pn+1 = pn −
[
1 +

(Tn − Tdes) ∂
2Tn/∂p

2

2 (∂Tn/∂p)
2

]
(16)

where pn+1 is the updated value of semilatus rectum, pn is the semilatus rectum of the previous
iteration, Tn is the nominal time of flight of the previous iteration, Tdes is the desired time of flight
(TCa,Ga or TGa,Io), and ∂Tn/∂p and ∂2Tn/∂p

2 are calculated using central finite differencing:

∂Tn/∂p =
T (pn + ppert)− T (pn − ppert)

2ppert
(17)

∂2Tn/∂p
2 =

T (pn + ppert) + T (pn − ppert)− 2Tn

p2pert
(18)
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where T (pn + ppert) and T (pn − ppert) are separate propagations of Eqs. 3–15 with semilatus recta
perturbed by ±ppert. Lambert’s problem is solved for the initial guess times of flight when Eq. 16
converges for both transfers:

|T (pCa,Ga,n)− TCa,Ga| < tol (19)

|T (pGa,Io,n)− TGa,Io| < tol (20)

where T (pCa,Ga,n) and T (pGa,Io,n) are the times of flight of the converged semilatus recta and tol is
the convergence tolerance.

Newton-Raphson method for V∞-matching

Although the Lambert solutions for the Callisto-Ganymede and Ganymede-Io transfers are a cru-
cial step in solving the triple flyby problem, there is no mathematical guarantee that the two conic
solutions can be patched together. If the incoming Ganymede flyby V∞ magnitude from the Callisto-
Ganymede transfer is not equal to (does not match) the outgoing Ganymede flyby V∞ magnitude
from the Ganymede-Io transfer, then the triple flyby is still impossible even if the two conic trajec-
tories encounter Ganymede at the same time.[29, 30] Even if the incoming and outgoing Ganymede
V∞ magnitudes are equivalent, the angular difference between the incoming and outgoing V∞ vec-
tors must also be less than the maximum hyperbolic turning angle for a Ganymede flyby at its
minimum safe altitude in order for the Ganymede flyby (and thus the triple flyby) to be feasible.
These two constraints on the Ganymede flyby parameters can be written in equation form as:

F1 = V −∞,Ga − V
+
∞,Ga = 0 (21)

F2 = δGa,max − δGa ≥ 0 (22)

where F1 is the V∞-matching constraint, F2 is the hyperbolic turning angle constraint, V −∞,Ga and
V +
∞,Ga are the incoming and outgoing V∞ magnitudes of the Ganymede flyby, and

sin δGa,max/2 =
1

1 + (RGa + hp,Ga,max)(V −∞,GaV
+
∞,Ga)/µGa

(23)

cos δGa =
~V −∞,Ga • ~V

+
∞,Ga

V −∞,GaV
+
∞,Ga

(24)

where δGa,max is the maximum allowable hyperbolic turning angle for the Ganymede flyby, δGa is the
turning angle from the Callisto-Ganymede and Ganymede-Io Lambert solutions,RGa is the physical
radius of Ganymede, hp,Ga,max is the minimum allowable Ganymede flyby altitude, and µGa is the
gravitational parameter of Ganymede. The incoming and outgoing V∞ vectors for the Ganymede
flyby are calculated from the Lambert solutions via the f and g functions (Eqs. 7–10) as follows:

~V −∞,Ga = (ġCa,Ga~rGa − ~rCa) /gCa,Ga − ~VGa (25)

~V +
∞,Ga = (~rIo − fGa,Io~rGa) /gGa,Io − ~VGa (26)
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where gCa,Ga, and ġCa,Ga are f and g functions for the converged Callisto-Ganymede transfer, fGa,Io
and gGa,Io are f and g functions for the converged Ganymede-Io transfer, ~rCa, ~rGa, and ~rIo are the
converged position vectors of the moons from the Lambert solutions, and ~VGa is the velocity vector
of Ganymede from the ephemerides.

The constraint equation for F1 (Eq. 21) matches the incoming and outgoing Ganymede flyby V∞
and is in a suitable form for use in an iterative, multidimensional, Newton-Raphson root-solving
algorithm. However, the equation for F2 (Eq. 22) is an inequality constraint, so it must be converted
into an equality constraint to be solved using the Newton-Raphson method. One method of con-
verting the inequality constraint into an equality constraint would be to introduce a slack variable
and then find a minimum norm solution. However, we chose to assume that the mission designer
would always want the maximum possible hyperbolic turning angle for the Ganymede flyby. Thus,
we simply replaced the ≥ sign in Eq. 22 with an = sign:

F2 = δGa,max − δGa = 0 (27)

Since we now have two equality constraints, multidimensional root solving requires the iteration
of two design variables. Since we have extracted initial guesses for the transfer times TCa,Ga and
TGa,Io from the interpolation structures developed in Part I[23], those two parameters are used as
design variables in a Newton-Raphson, multidimensional root solving algorithm. In summary, the
constraint vector (F̄ ) and the design variable vector (X̄) are given by the following equations:

F̄ =

(
F2
F1

)
(28)

X̄ =

(
TCa,Ga
TGa,Io

)
(29)

The equation that updates the times of flight TCa,Ga and TGa,Io to satisfy the constraint equations
is:

X̄ j+1 = X̄ j −
(
∂F̄

∂X̄

)−1
F̄(X̄ j) (30)

where
(
∂F̄ /∂X̄

)
is the Jacobian matrix of the system and is calculated via central finite differencing

with equations similar to Eq. 17. The convergence criteria for the V∞-matching algorithm are
similar to those in Eqs. 19 and 20. For each iteration, the design variables are changed, so Lambert’s
problem must be solved again to find the Callisto-Ganymede and Ganymede-Io transfers consistent
with the new times of flight. Thus, the V∞-matching process is the iterative outer loop that solves
for the Ganymede flyby conditions and the Lambert solution process is the iterative inner loop
that solves for the Callisto-Ganymede and Ganymede-Io transfers. Fig. 2 depicts the V∞-matching
process.

Calculating the Callisto and Io Flybys: Mission Design Considerations

The combined V∞-matching and Lambert problem only calculates the Ganymede flyby condi-
tions, the Callisto-Ganymede and Ganymede-Io transfers, and the Jupiter-centered positions of the
Callisto and Io flybys. Hence, the Callisto and Io flyby conditions are not yet specified. While there
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Lambert Solutions 1 and 2:   

does not match  

Converged -matching Solution: 

Lambert Solution 3:   

matches  with  

Callisto is conically propagated backwards by time . 

Io is conically propagated 

forward by time . 

Figure 2. Within the V∞-matching process, Lambert’s problem is solved iteratively.
The convergence criteria for the V∞-matching problem are that the incoming V∞ at
Ganymede from a converged Callisto-Ganymede transfer Lambert solution matches
the outgoing V∞ at Ganymede from a converged Ganymede-Io transfer Lambert so-
lution with a specified hyperbolic turning angle for the Ganymede flyby (δGa,max).
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Figure 3. Globe of constant V∞ for Callisto Flyby. The post-flyby V∞ is fixed, but
there are 32 possible solutions for the pre-flyby V∞ on the “small circle” surrounding
the post-flyby V∞ on the V∞-globe.

are an infinite number of possible Callisto and Io flybys at the beginning and end of a triple flyby
sequence, we limit that solution space by specifying the hyperbolic turning angles of the flybys
as the maximum safe turning angles (corresponding to the minimum safe flyby altitudes). These
hyperbolic turning angles are calculated using analogous equations to Eq. 23. Combining the V∞-
globe terminology of Strange et al.[34] with the terminology of cartography, the solution space for
the Callisto and Io flybys are “small circles” on the Callisto and Io V∞-globes which are centered
around the outgoing Callisto V∞ vector and the incoming Io V∞ vector. These “small circles” are
discretized into 32 equally-spaced flyby solutions for both the Callisto and Io flyby as depicted by
Fig. 3. While this discretization technically generates 1024 trajectories for each triple flyby solution,
only 64 need to be recorded since the mission design after the triple flyby is distinct from the mis-
sion design before the flyby sequence. Before this point, the problem was a purely computational
astrodynamics problem to solve for triple flybys. Now, practical mission design considerations need
to be taken into account in order to select which 2 of the 64 possible trajectories to consider further.

From a mission design standpoint, there are three practical uses for triple flybys. Triple flybys
could be used to capture a spacecraft into orbit about Jupiter, to allow a spacecraft to escape Jupiter
orbit, or to be used within a Jupiter satellite tour as science flybys. For the third case, the 32 pre-
Callisto solutions would be used to connect the triple flyby to the earlier stages of the satellite tour.
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Similarly, the 32 post-Io solutions would be used to connect the triple flyby to the remainder of
the tour. The full incorporation of triple flybys into Jupiter satellite tours is beyond the scope of
this paper, but a plausible method of incorporation would be to connect the pre-Callisto and post-Io
apojoves with apojoves from other orbits in the tour. The capture and escape cases are dynamically
symmetric, so only the capture case will be discussed in detail. Some of the limited mission design
uses of a Jupiter escape would be for Europa sample returns or multi-planet satellite tours. In
contrast, all Jupiter satellite tour missions would require capture, so triple flybys for capture (i.e.
triple-satellite-aided captures) would be useful for a wide range of Jupiter mission scenarios.

The most efficient triple-satellite-aided captures occur when the Io and Callisto flybys are equa-
torial flybys that maximally reduce the Jupiter-centered orbital energy of the orbit. Thus, the post-Io
solution that minimizes Jupiter-centered orbital energy should always be chosen for an optimal cap-
ture. Since the Callisto flyby is modeled in the negative time direction, the pre-Callisto solution that
maximizes Jupiter-centered orbital energy before the Callisto flyby should be chosen for an optimal
capture. These guidelines inform the choice of the trajectories before and after the triple-satellite-
aided capture sequence.

RESULTS

Mission Design of Triple-satellite-aided Capture Sequences

After the best pre-Callisto and post-Io trajectories are chosen for each of the calculated triple
flybys, there are still thousands of possible triple flybys in the solution space to investigate for
triple-satellite-aided capture sequences. Obviously, the Ganymede flyby should be energy-reducing
rather than energy-increasing for a capture, which eliminates about 1/2 of the remaining solution
space. The final mission design consideration is finding a feasible Earth/Mars to Jupiter transfer
before the Callisto flyby. This consideration requires that the incoming Jupiter-centered V∞ vector
be as close to anti-parallel as possible with Jupiter’s heliocentric velocity vector.

180◦ − cos−1

 ~V −∞,Jup • ~VJup,Sun∣∣∣~V −∞,Jup

∣∣∣ ∣∣∣~VJup,Sun

∣∣∣
 ≈ 0◦ (31)

where ~V −∞,Jup is the spacecraft’s incoming, Jupiter-centered V∞ vector and ~VJup,Sun is Jupiter’s he-

liocentric velocity vector. ~VJup,Sun is estimated from ephemeris data for the Ganymede flyby times
of the triple flybys, and ~V −∞,Jup is calculated for all 32 pre-Callisto solutions for all triple flyby solu-
tions that have hyperbolic pre-Callisto trajectories. This calculation is performed for both Callisto-
Ganymede-Io-Perijove triple flybys (that have three flybys in a row and then pass perijove) and
Callisto-Ganymede-Perijove-Io triple flybys (that have two flybys of Callisto and Ganymede, pass
perijove, and then perform a flyby of Io). The angle results for Callisto-Ganymede-Io-Perijove
(CGIP) triple flybys are plotted in Fig. 4. The thick lines represent available, backward-propagated
optimal transfers to the inner solar system at 2026 and 2033. These two trajectory windows will later
be searched using STK to determine if an ideal Earth-Jupiter or Mars-Jupiter transfer is available.

Similarly, the angle results for Callisto-Ganymede-Perijove-Io (CGPI) triple flybys are plotted in
Fig. 5. There are more available CGPI trajectories than CGIP trajectories because there about three
times as many triple flybys in Part I[23] that had Io flybys after perijove than those that had Io flybys
before perijove. A total of nine trajectory windows will be searched in STK for CGPI trajectories:
two in 2026 and one in 2029, 2030, 2033, 2034, 2036, 2037, and 2039.
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Figure 4. For Callisto-Ganymede-Io-Perijove triple flybys, there are two possible,
backward-propagated optimal transfers to the inner solar system: at 2026 and at
2033 (thick lines).
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Figure 5. For Callisto-Ganymede-Perijove-Io triple flybys, there are nine possible,
backward-propagated optimal transfers to the inner solar system (some of the lines).
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Table 1. Characteristics of the Six Feasible Trajectory Windows.

Trajectory Window Arrival V∞ Capture Orbit Flybys
(Ganymede Flyby)

CGIP April 2 2026 4.7 km/s 590 days Earth Flyby
CGIP June 14 2033 5.1 km/s 509 days Mars Flyby
CGPI April 2 2026 5.3 km/s 587 days Earth Flyby
CGPI Dec. 2 2029 3.6 km/s 97 days Mars Flyby
CGPI Jan. 15 2033 5.7 km/s 2933 days Mars Flyby
CGPI Dec. 31 2034 5.7 km/s Hyperbolic Earth and Mars

High-fidelity Triple-Satellite-Aided Captures in STK

High-fidelity, triple-satellite-aided capture trajectories were computed in STK for each of the 11
CGIP and CGPI trajectory windows. A series of two nested targeting loops were used to target
the B-plane parameters of the Callisto, Ganymede, and Io flybys. The STK targeting methodology
used was similar to that used by Lynam et al.[19, 20] to target double- and triple-satellite-aided cap-
ture sequences. After the triple-satellite-aided capture sequences were found, they were backward-
propagated for 2 or 3 years until they reached the inner solar system. For five of the trajectory
windows, Earth and Mars flybys were both unavailable because of poor phasing (the second 2026
CGPI trajectory, the 2030 CGPI trajectory, the 2036 CGPI trajectory, the 2037 CGPI trajectory,
and the 2039 CGPI trajectory). Thus, there are six feasible trajectory windows for CGIP and CGPI
trajectories between 2024–2040; several features of these six trajectory windows are described in
Table 1.

In Table 1, the sequence type (CGIP vs. CGPI) and the month and year of Jupiter arrival are
listed in the first column for all six feasible trajectory windows. In the second and third columns, the
arrival V∞ of the spacecraft at Jupiter and the capture orbit period after the triple flybys (assuming
no impulsive ∆V ) are given. The first three trajectories have capture orbit periods between 500
and 600 days, so they would require impulsive ∆V ’s at perijove (Jupiter orbit insertion maneuvers)
of about 100 m/s to reduce their capture orbit periods to 200 days (the capture orbit of Galileo[4])
and about 200 m/s to reduce their capture orbit periods to 100 days. The fourth trajectory has a
capture orbit period of 97 days, so it does not require chemical propulsion to capture into Jupiter
orbit. The fifth and six trajectories do not capture into feasible capture orbits, so an impulsive ∆V
of 225 m/s would be required to capture them into 200-day orbits and 350 m/s for 100-day orbits.
These impulsive JOI ∆V estimates are based on the methodology of Lynam et al.[19]

On the fourth column of Table 1, possible flybys of Earth or Mars are listed for each trajectory
window. Unlike the double-satellite-aided capture trajectories of Lynam and Longuski[20] that
had precise, ballistically-propagated, backward-targeted flybys of Earth, these triple-satellite-aided
capture trajectories would miss Earth by millions of kilometers without additional ∆V applied
between Earth and Jupiter. This miss distance is due to the fact that Jupiter arrival V∞ is the only
available control variable after triple-satellite-aided capture sequences are targeted, and the B-planes
for Earth and Mars flybys have two target variables: B • R and B • T . Because the ballistic
backward-targeting problem is overconstrained, additional ∆V is required to backward-target the
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Figure 6. Interplanetary, low-thrust trajectory in STK that launches from Earth on
September 2024, flys by Mars on May 2026, and arrives at Jupiter on December 2029.

Earth or Mars flybys. Although it is possible to use chemical propulsion to provide enough ∆V to
backward-target the Earth or Mars flybys, the additional impulsive ∆V (which would translate into
extra required chemical propellant mass) would defeat the purpose of using triple-satellite-aided
capture vs. double-satellite-aided capture, which is to save additional propellant mass. Hence, we
suggest that low-thrust, Solar electric propulsion (SEP) trajectories similar to those discovered by
Landau et al.[17] and Strange et al.[18] be used for the heliocentric portion of the trajectories.

Because the CGPI Dec. 2029 is the only trajectory that is feasible with only low-thrust, solar
electric propulsion and would not require a chemical Jupiter orbit insertion maneuver, we focus on
finding a full trajectory from Earth launch to Mars flyby to Jupiter triple-satellite-aided capture for
that window only. Because STK does not have a low-thrust trajectory optimizer, we approximate
low-thrust by adding impulsive maneuvers at 30-day increments along the cruise from Earth to Mars
and from Mars to Jupiter. In Fig. 6, the spacecraft launches from Earth, performs several simulated
low-thrust maneuvers (indicated by the switches between blue and red in the trajectory plot), flys
by Mars, performs several more simulated low-thrust maneuvers, and coasts to Jupiter once it is
far enough away from the Sun that Solar electric propulsion would be less useful. The low-thrust
maneuvers are primarily in the velocity direction, but they have slight normal and co-normal (out-
of-plane) components to backward target the Mars flyby and Earth launch. The time of flight of the
converged trajectory from Earth to Jupiter capture is 5.2 years, the total amount of unoptimized low-
thrust ∆V is 7.3 km/s, and the maximum required low-thrust acceleration is about 2× 10−7 km/s2

(which corresponds to a thrust of 1 Newton for a 5000 kg spacecraft).

The Callisto-Ganymede-Perijove-Io capture sequence at Jupiter is plotted on Fig. 7. The space-
craft performs a flyby of Callisto, transfers to a Ganymede flyby 19 hours later, passes its perijove at
4.2 RJ 17 hours later, performs a flyby of Io 4 hours later, and captures into a 97-day capture orbit.
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Figure 7. A Callisto-Ganymede-perijove-Io triple-satellite-aided capture sequence is
used to ballistically capture a spacecraft into a 97-day orbit.

Since the goal is to reduce the capture orbit period as much as physically possible, all three of the
flybys had low flyby altitudes: the Callisto flyby had an altitude of 95 km, the Ganymede flyby had
an altitude of 125 km, and the Io flyby had an altiude of 137 km. These low altitude flybys in rapid
succession would require precise and rapid navigation, perhaps even autonomous navigation.[21]
It would be straightforward to find higher altitude flybys for this trajectory window at the cost of
longer capture orbit periods.

DISCUSSION

A vast number of triple flyby solutions were computed using second-order, p-iteration Lambert
solving and V∞-matching. In retrospect, the p-iteration Lambert solver was probably not the best
option, because it has a singularity for 180◦ transfers. The triple flyby solutions had constrained
Ganymede flybys, but their Callisto and Io flybys were unconstrained, so the solution spaces of
the Callisto and Io flybys were discretized into 32 different pre-Callisto and 32 different post-Io
solutions for each triple flyby. The hyperbolic pre-Callisto solutions were backward propagated via
f and g functions to estimate the Jupiter-centered arrival V∞ vectors. The angles between these
arrival V∞ vectors and the concurrent heliocentric velocity vectors of Jupiter were calculated for all
hyperbolic pre-Callisto solutions. The hyperbolic pre-Callisto solutions that had angles near 180◦

were further investigated within STK. Eleven trajectory windows were searched within STK, and
six of these trajectory windows (recorded in Table 1) had feasible backward targeted Earth or Mars
flybys.

In Table 1, the CGPI Dec. 2029 trajectory window is the best because the spacecraft’s cap-
ture orbit is less than 100 days without any additional impulsive ∆V . Thus, a spacecraft using
a low-thrust, solar electric propulsion (SEP) system could capture into orbit about Jupiter using
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this trajectory without having an additional chemical propulsion system. This triple-satellite-aided
capture trajectory is qualitatively similar to the Callisto-Perijove-Ganymede (CPG) double-satellite-
aided capture trajectory found by Strange et al.[18] that would arrive at Jupiter in June 2027. The
notable differences between the CGPI Dec. 2029 trajectory and the CPG June 2027 trajectory found
by Strange et al. are that the capture orbit period is much lower for the CGPI trajectory (97 days
vs. 354 days), the CGPI trajectory would be more difficult to navigate[21], the CGPI trajectory
has a lower perijove (4.2 RJ vs. 9.4 RJ) so it would accumulate more radiation[35], and there is
only one CGPI trajectory with these characteristics between 2024 and 2040 whereas there are likely
several CPG trajectories with these characteristics, since it is much more common for two moons to
geometrically align for flybys than three. The primary advantages of having a shorter capture orbit
period are that less propellant and thrust would be required to mitigate solar perturbations and that
the spacecraft would be able to begin its primary science mission sooner rather than spend a long
time in a capture orbit.

While the other five triple-satellite-aided capture windows in Table 1 would be physically feasi-
ble, they are likely less optimal than CPG double-satellite-aided capture because they would require
either more chemical ∆V to backward target the Mars or Earth flybys or require the awkward con-
struction of a spacecraft with both chemical and electric propulsion. The other five solutions would
also have the same navigation and radiation difficulties as the more optimal CGPI Dec. 2029 so-
lution. It is possible that other Callisto, Ganymede, and Io triple flybys with different flyby orders
(e.g. a Ganymede flyby, then an Io flyby, and then a Callisto flyby after perijove) may produce other
optimal trajectories that are similar to the CGPI Dec. 2029 solution, but for now that solution is the
only solution that would compare favorably with double flybys.

CONCLUSIONS

A nested Lambert and V∞-matching solver was used to find numerous Callisto-Ganymede-Io
triple flybys from the candidate trajectory times from Part I[23]. These triple flybys were post-
processed to find optimal triple flybys for triple-satellite-aided capture for missions to Jupiter. One
particularly attractive Lambert solution was transformed into a fully integrated, end-to-end, low-
thrust trajectory from Earth to Jupiter capture. This trajectory solution would launch from Earth
in September 2024, perform a gravity assist of Mars, and arrive at Jupiter in December 2029.
Upon Jupiter arrival, the spacecraft would capture into a 97-day orbit about Jupiter after performing
gravity-assist flybys of Callisto, Ganymede, and Io. The benefits of using this particular trajectory
over other triple flyby and double flyby solutions are that chemical propulsion is not needed to cap-
ture the spacecraft into a feasible capture orbit and the capture orbit period is much shorter than
alternative solutions. This shorter capture orbit would allow the spacecraft to begin its science mis-
sion sooner and reduce the propellant cost required to mitigate solar perturbations. Although this
trajectory was integrated but not optimized, it is likely that an optimized variant of this solution may
provide a trajectory that optimally balances the goals of maximizing payload mass and minimizing
time of flight for a Jupiter science mission.
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