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PRELIMINARY ANALYSIS FOR THE NAVIGATION OF
MULTIPLE-SATELLITE-AIDED CAPTURE SEQUENCES AT

JUPITER

Alfred E. Lynam∗, James M. Longuski†

Multiple-satellite-aided capture employing gravity assists of more than one Galilean
moon can help capture a spacecraft into orbit about Jupiter. Each additional moon
flyby reduces the propulsive ∆V required for Jupiter capture. While the existence
of these trajectories has been demonstrated deterministically, the challenges asso-
ciated with actually navigating a spacecraft through several close flybys in rapid
succession are nontrivial. This paper addresses these navigation challenges by us-
ing simulated observations to estimate a spacecraft’s orbit as it approaches Jupiter
and by targeting trajectory correction maneuvers to guide the spacecraft through
multiple-satellite-aided capture sequences. Results indicate that radiometric nav-
igation alone can easily provide safe double-satellite-aided capture sequences us-
ing a ballistic strategy, i.e. without any trajectory correction maneuvers (TCMs)
in between flybys. However, triple-satellite-aided capture sequences require the
operational capacity to target TCMs in between flybys in order to be feasible.

INTRODUCTION

The use of gravity-assist flybys of moons to reduce the ∆V required to capture a spacecraft into
orbit around a planet is called satellite-aided capture. Satellite-aided capture was first proposed for
Jupiter missions by Longman1 and Longman and Schneider.2 They calculated the Galilean moons’
capacity to decrease in the orbital energy of a spacecraft via gravity assist for sequences involving
flybys of one or two moons.

Cline,3 Nock and Uphoff,4 MacDonald and McInnes,5 Yam,6 and Okutsu et al.7 have all made
substantial contributions to the single-satellite-aided capture problem. A single-satellite-aided cap-
ture sequence with an Io gravity-assist was used to capture Galileo into orbit around Jupiter, saving
175 m/s of ∆V .8 Some initial mission design of double-satellite-aided capture sequences has been
done by Nock and Uphoff,4 Johannesen and D’Amario,9 Landau et al.10

Lynam et al.11 discovered triple- and quadruple-satellite-aided capture sequences at Jupiter and
extended the mission design of double-satellite-aided capture sequences. They estimated the ∆V
savings and sensitivity to flyby altitude errors of each type of multiple-satellite-aided capture se-
quence using a patched-conic model and integrated high-fidelity trajectories in AGI’s STK.12 Lynam
and Longuski13 extended this analysis by finding interplanetary trajectories from Earth to Jupiter
that used double- or triple-satellite-aided capture to achieve orbit about Jupiter.
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There has been no published work on the navigation of multiple-satellite-aided capture sequences,
however, the actual navigation of Galileo’s single-satellite-aided capture sequence that used an Io
gravity assist has been documented by Haw et al.14 Due to a tape recorder anomaly in the Galileo
spacecraft, no optical images were available for navigation, so Galileo’s single-satellite-aided cap-
ture sequences was exclusively navigated using radiometric tracking data. Due to the lack of optical
navigation, the orbit determination errors of the Io gravity assist were rather large (1σ altitude errors
of about 30 km and out-of-plane errors of 70 km).14

While planning for the delayed Europa orbiter mission, Guman et al.15 performed a navigation
feasibility study for a sample mission with an Io single-satellite-aided capture sequence and Raofi
et al.16 performed a statistical ∆V analysis for a different sample mission with a Ganymede single-
satellite-aided capture sequence. In the navigation feasibility study with the Io flyby, the 1σ altitude
errors were also about 30 km, but the out-of-plane errors were close to 40 km.15

Although 30-km altitude errors are acceptable for single-satellite-aided capture sequences, much
higher precision is needed for multiple-satellite-aided capture. Lynam et al.11 showed that flyby
errors will geometrically propagate to subsequent flybys. For example, in a Ganymede-Io double-
satellite-aided capture sequence, a 40-km altitude error in the Ganymede flyby will ballistically
propagate to a 340-km altitude error in the Io flyby.

This paper applies the navigation techniques discussed above to solve the navigation problem for
multiple-satellite-aided capture. In our model, we simulate a set of observations from a spacecraft
approaching Jupiter, determine its covariance using navigation filtering techniques, and estimate
the required statistical ∆V by targeting trajectory correction maneuvers. The trajectory correction
manuevers are tested within a Monte Carlo simulation to determine the ∆V statistics for a variety
of maneuver times and targeting strategies.

NOMINAL TRAJECTORY DESIGN

Patched-conic Results

Lynam et al.11 estimated the deterministic ∆V required to capture a spacecraft into orbit around
Jupiter via multiple-satellite-aided capture by using a patched-conic method. Within this circular,
coplanar, patched-conic method, the gravity assists of Jupiter’s moons are modeled as instantaneous
decreases in the spacecraft’s Jovicentric orbital energy and perijove. The spacecraft’s trajectory is
propagated between gravity assists using Jupiter-centered conic sections. A Jupiter orbit insertion
(JOI) maneuver is added at perijove to complete the capture sequences. These patched-conic ∆V
estimates for varying numbers of gravity assists of the Jovian moons and various perijove radii are
tabulated in Table 1. A more detailed description of this patched-conic method and more complete
results for the deterministic ∆V ’s for multiple-satellite-aided capture sequences are available in
Lynam et al.11

These deterministic ∆V estimates will guide our choices of sequences to investigate further. The
double-satellite-aided capture sequences that require the least deterministic ∆V are Ganymede and
Io sequences, and the triple-satellite-aided capture sequences that require the least deterministic ∆V
are Callisto, Ganymede, and Io sequences. We will also focus on sequences that finish their gravity
assists before their JOI maneuvers, because the JOI maneuver will introduce additional error in sub-
sequent flybys. Thus, the two sequences that we will investigate in more detail are Ganymede-Io-JOI
sequences and Callisto-Ganymede-Io-JOI sequences. Ganymede-Io-JOI sequences would perform
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Table 1. ∆V for Best Jupiter Capturea, m/s

JOI (5 RJ)b JOI (4 RJ) JOI (3 RJ) JOI (2 RJ) JOI (1.01 RJ)
Flyby Sequences ∆V , m/s ∆V , m/s ∆V , m/s ∆V , m/s ∆V , m/s

Unaided 825 735 641 524 371
Best Single 556 526 483 416 308
Best Double 330 340 333 299 228
Best Triple 202 232 245 234 190
Best Quadruple — — — 175 160

a Arrival C3 is 31.36 km2/s2, flyby altitudes are fixed at 300 km, and the spacecraft
captures into a 200-day orbit.

b RJ=71,492 km.

close flybys of Ganymede and Io before executing a JOI maneuver, while Callisto-Ganymede-Io-
JOI sequences would also include a Callisto flyby before the other two flybys.

Integrated Interplanetary Trajectories

Lynam and Longuski13 used AGI’s STK12 to find high-fidelity interplanetary trajectories from
Earth to Jupiter capture that included multiple-satellite-aided capture sequences. The STK propa-
gator model includes the best available gravity fields of Jupiter and its moons, the Sun’s point-mass
gravity, solar radiation pressure, and general relativity perturbations. The interplanetary trajec-
tories that used double-satellite-aided capture sequences (e.g. Ganymede-Io-JOI sequences) did
not require any deterministic deep space maneuvers between Earth and Jupiter, but the trajecto-
ries that included triple-satellite-aided capture sequences required between 40 m/s (for a particular
Ganymede-Io-JOI-Europa sequence) and 100 m/s (for a particular Callisto-Ganymede-Io-JOI se-
quence) of deterministic ∆V to target the sequences. For these two particular trajectories, the deep
space maneuver (DSM) ∆V required to target the triple-satellite-aided capture sequences offsets
the potential JOI ∆V savings of using triple-satellite-aided capture vs double-satellite-aided cap-
ture. However, an exhaustive search of all triple-satellite-aided capture sequences has yet to be
completed, so it is possible that some triple-satellite-aided capture sequences may require less de-
terministic ∆V than double-satellite-aided capture sequences.

We are focusing on Ganymede-Io-JOI sequences and Callisto-Ganymede-Io-JOI sequences for
our navigation analysis to avoid the complexity of including a JOI maneuver in between flybys,
so we select two nominal interplanetary trajectories that include these capture sequences. We only
use direct Earth-Jupiter trajectories for simplicity, but Lynam and Longuski13 showed that these di-
rect trajectories could be extended to form interplanetary trajectories that include additional gravity
assists of Venus, Earth, or Mars. The Callisto-Ganymede-Io-JOI sequence is suboptimal because
it has a much higher arrival C3 (47.7 km2/s2) than a Hohmann transfer (31.4 km2/s2) and a 100
m/s DSM, but its statistical ∆V requirements should be roughly equivalent to a better Callisto-
Ganymede-Io-JOI trajectory. For the statistical ∆V analysis, the most important properties of the
trajectories are their encounter times, flyby altitudes, and B-plane angles, so these are included in
Tables 2 and 3. (A derivation of B-plane parameters is included in the appendix.)
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Table 2. Integrated GIJ Flyby Sequence: Flyby Parameters

Encounter Times, UTC Encounter B-plane angle, deg hp, km

16 June 2022 5:17 Earth — —
29 Aug 2024 19:22 Ganymede 0.0 300.8
30 Aug 2024 5:53 Io 45.4 356.9
30 Aug 2024 10:10 Jupiter — —

Table 3. Integrated CGIJ Flyby Sequence: Flyby Parameters

Encounter Times, UTC Encounter B-plane angle, deg hp, km

27 Feb 2021 23:39 Earth — —
14 Dec 2023 14:19 Callisto 0.0 250.4
15 Dec 2024 7:00 Ganymede -21.1 446.0
15 Dec 2024 17:50 Io -0.1 376.2
15 Dec 2025 22:16 Jupiter — —

LOW-ORDER COVARIANCE ANALYSIS

Observations

The first step of our navigation analysis is a statistical orbit determination covariance analysis.
We employ three different orbit determination strategies: a purely radiometric strategy, a combined
radiometric and optical navigation strategy, and a purely optical navigation strategy (to simulate
autonomous optical navigation.) Radiometric observables include the range, the range-rate (a sim-
plification of Doppler data), and the right ascension and declination angles (a simplification of ∆-
DOR or ∆-VLBI) of the spacecraft as observed from the DSN tracking stations on Earth. Optical
observables are the right ascension and declination angles (a simplification of the picture taking and
image processing involved in OpNav) of the Galilean moons as observed from the spacecraft.

In our simplified model, we assume that each simulated observation has an error that is distributed
around its actual value via a gaussian distribution. The standard deviations of these distributions are
recorded in Table 4. The standard deviations for the radiometric observables are loosely based on
the standard deviations or data residuals from the Mars Exploration Rover (MER)17 and Cassini
missions.18 The optical navigation errors are based on the notional narrow angle camera for the
2008 JEO mission study.19 This camera has a 1.17 degree field of view and can produce OpNav
images that are stored as 2048 by 2048 arrays of digital pixels. We assume that attitude knowledge,
star-tracking, limb-scanning, and center-finding techniques can determine the angular direction from
the spacecraft to the centers of the Galilean moons to within 0.1 pixels, which corresponds to about
1 µrad in right ascension and declination. This 0.1 pixel standard deviation is similar to those used
in the Cassini approach phase to Saturn.
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Table 4. Standard Deviations of Simulated Observations

Observable Simulated 1-σ Error

Range from Earth 5 m
Range-rate from Earth 0.5 mm/s
Radiometric RA and Dec angles from Earth 5 nrad
OpNav RA and Dec angles to moons 1 µrad

Estimated States

State estimation is the next stage of our low-order covariance analysis. We use an Earth-centered
J2000 coordinate system in our state (position and velocity) estimates when we use navigation
techniques that include radiometric observations. In those cases, the ephemerides of the Galilean
moons and Jupiter are used as additional states in order to estimate the state of the spacecraft with
respect to these bodies. This methodology allows the Earth-centered state of the spacecraft and the
Earth-centered positions of the Galilean moons and Jupiter to be updated simultaneously within the
orbit determination filter. For OpNav-only navigation techniques, we only track the relative state
of the spacecraft with respect to each of the Galilean moons, since no Earth-relative information is
assumed to be available.

We use the same STK state propagation model for our low-order covariance analysis as we used
for the nominal trajectory. The state transition matrix between the spacecraft’s state at the time of
an observation and its state at an orbit determination epoch is calculated numerically by integrating
six trajectories that are slightly perturbed from the nominal trajectory (each perturbed in one of the
six position and velocity states) and using finite differencing. The state transition matrix between
the states and the ephemerides is integrated using a separate numerical integrator within MATLAB.
This numerical integrator only uses the point-mass gravity of the Sun, Jupiter, and the Galilean
moons to propagate this portion of the state transition matrix, so it is less accurate than the STK
integrator. However, use of a less precise propagator is consistent with the low-order nature of this
covariance analysis, so it is good enough for our preliminary navigation analysis.

The simulated observations are used to estimate the covariance spacecraft’s state and ephemerides
via a batch sequential filter. The filter was constructed using a combination of batch and Kalman
filtering techniques. The observations are processed in one day “batches” by using state transition
matrices to map all the simulated observations during a single day to the beginning of that day.
The resulting covariance matrix at the beginning of that day is stored and propagated (via the state
transition matrix) to the end of that day. The resulting covariance matrix at the end of the first
day of observations is used as an initial covariance matrix for the processing of the second day of
observations (demonstrating the sequential aspect of the filter). This process is repeated in one day
increments until the spacecraft is a few days away from its first flyby of one of the Galilean moons.

Radiometric-Only Tracking

The first orbit determination tracking technique we used was radiometric navigation with no
OpNav pictures. Thus, only the first 3 observables (range, range-rate, and angular data with respect
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to Earth) in Table 4 were used in this covariance analysis. The radiometric observations were
simulated using the ephemerides of the positions of the largest Deep Space Network (DSN) Earth-
based radiometric tracking stations (at Goldstone, CA, Canberra, Australia, and Madrid, Spain). In
this low-order covariance analysis, we simulated the range and range-rate observables by finding
the actual range and range rate of the spacecraft from each tracking station and perturbing it by
Gaussian random variables with mean zero and standard deviations equivalent to those in Table4.
Range and range-rate data were only recorded from one station at a time (the station facing the
spacecraft at that time). Angular data are only collected when two stations are facing the spacecraft
at the same time.

This navigation strategy is similar to the strategy used by the Galileo spacecraft as it approached
Jupiter because of Galileo’s lack of OpNav capacity.14 The key difference between Galileo’s
use of only radiometric data and the use of only radiometric data for a future mission is that the
ephemerides of the Galilean moons are now better known because of the data collected by Galileo
during its satellite tour of the Galilean moons. While the ephemerides of the Galilean moons that
were used by Galileo had errors of more than 100 kilometers,20 the current ephemerides have esti-
mated errors of only 5 kilometers in each direction.21 Additionally, Jupiter’s position with respect
to Earth is much better known than it was during the Galileo mission and will be known even more
precisely after the Juno mission.22 The estimated a priori ephemeris knowledge error of Jupiter’s
position with respect to Earth is assumed to be 15 kilometers in each direction.

The low-order covariance analysis for radiometric-only navigation begins about one month before
the spacecraft reaches the Galilean moons. The radiometric observations can quickly and precisely
determine the spacecraft’s state with respect to Earth, but determining the spacecraft’s state with
respect to Jupiter requires more observations and cannot be known as precisely. The spacecraft’s
state with respect to a Galilean moon cannot be determined radiometrically until the spacecraft
performs a flyby of that moon, so the radiometric-only navigation technique relies strongly on the
accuracy of the a priori ephemerides of the Galilean moons to target the flybys of the moons.

Autonomous Optical Navigation

The second orbit determination technique we analyze is using only optical navigation. In this
analysis, we assume that the spacecraft is operating autonomously from Earth, so it would only
have access to its own OpNav pictures to navigate itself. Although the process of extracting useful
orbit determination observables from OpNav images is complex in practice,23 we assume that the
spacecraft can autonomously process the OpNav images to provide angular information about the
spacecraft’s position relative to the Galilean moons. For simplicity, all four Galilean moons are
modeled to be tracked simultaneously. Hence, each observation contains 8 observables: right as-
cension (RA) and declination (Dec) angles for each moon. Realistically, it is unlikely that all four
moons would be in a single OpNav image’s frame at the same time, so we assume that multiple
OpNav images are taken per observation. In our simplified OpNav model, we further assume that
the OpNav images are uninterrupted and taken at a constant rate. Thus, we do not consider eclipses
of the Galilean moons with each other or with Jupiter. We also do consider interruptions due to
other operational requirements for the spacecraft. Because of these assumptions, the actual rate of
pictures would have to be faster than our modeled rate to get the same results.

Autonomous Optical navigation has been used by two missions: Deep Space 124,25 and Deep
Impact.26,27 Deep Space 1 was a technology demonstrator mission that performed autonomous
flybys of the asteroid Braille and the comet Borrelly. Deep Impact was composed of two spacecraft:
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a spacecraft that performed a flyby of comet Tempel 1 and a spacecraft that impacted comet Tempel
1. Normal radiometric and optical navigation were performed until the impactor was 2 hours away
from its collision with comet Tempel 1. The final two hours of the impact trajectory were navigated
by the spacecraft completely autonomously. Three maneuvers were executed in the minutes before
impact, so the impact was able to be controlled to within 250 meters of its aimpoint.27

Because of the dynamical sensitivity of multiple-satellite-aided capture sequences, the extremely
precise targeting of Deep Impact’s AutoNav would be useful in navigating these sequences. How-
ever, there are several important differences between the navigation problems of targeting a comet
impact and targeting several successive close flybys of the massive Galilean moons. First of all, the
a priori ephemerides of the Galilean moons are far more accurate than those of a comet or asteroid.
The surfaces and rotation rates of the Galilean moons are much better defined than those of comets.
The Galilean moons are also several orders of magnitude larger than comets, so using OpNav to
perform centerfinding would be more difficult as the spacecraft approaches a moon and its OpNav
frame becomes completely encompassed by the moon. In this scenario, traditional OpNav would
not be effective when the spacecraft gets too close to a moon, so landmark optical navigation, radar
navigation, or lidar navigation may become necessary to autonomously navigate the spacecraft as
it approaches a moon.28−30 These advanced flyby navigation concepts are beyond the scope of this
preliminary analysis, however, so we end our AutoNav analysis a few days before the first flyby of
a multiple satellite-aided capture sequence.

The results of the low-order covariance analysis for autonomous optical navigation indicate that
the position of the spacecraft relative to the Galilean moons can be determined to within a few
kilometers about 3 days before a multiple-satellite-aided capture sequence begins. In particular,
the position of the spacecraft relative to Ganymede, Europa, and Callisto can be determined with
an accuracy of approximately 1 kilometer if we assume OpNav observations of all four Galilean
moons every 5 minutes for 25 days. The spacecraft’s relative position to Io has an error of more
than 2 kilometers because its orbit is closer to Jupiter than the other Galilean moons. If we assume
OpNav observations of all four Galilean moons every hour for 25 days, the position errors are about
8 kilometers for Io, 4 kilometers for Europa, and 3 kilometers for Callisto and Ganymede. The first
flybys of our nominal trajectories in Tables 2 and 3 are Ganymede and Callisto, respectively, so
the better knowledge of the spacecraft-relative positions of these moons would decrease the error
in the first flyby of each sequence. Because flyby errors propagate geometrically in these multiple-
satellite-aided capture sequences,11 decreasing the error in the first flyby of these sequences can
greatly decrease the error in subsequent flybys if there are no trajectory correction maneuvers in
between flybys.

Combined Radiometric and Optical Navigation

The final orbit determination strategy involves both radiometric and optical navigation. Unlike
both the radiometric-only strategy and the autonomous optical navigation strategy, this strategy can
actually provide knowledge of the spacecraft’s position with respect to Earth with radiometric data
and update the ephemeris positions of Jupiter and its Galilean moons with OpNav data. In our low-
order covariance model, the position and velocity of a spacecraft with respect to Earth using this
stategy is known precisely, so the covariance update of the ephemerides of Jupiter and its Galilean
moons is the primary result of this analysis. Figure 1 shows the improvement of the ephemerides of
Jupiter and the Galilean moons over 26 days of observation.
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Figure 1. Covariance results for combined radiometric and optical navigation for
Jupiter approach. The picture rate is one OpNav image of each moon every 5 minutes.
We note that the data collection ends 2–3 days before the first flyby of the multiple-
satellite-aided capture sequence.

ESTIMATING THE STATISTICAL ∆V : MONTE CARLO SIMULATIONS

After the covariance analysis, we estimate the statistical ∆V of the two multiple-satellite-aided
capture sequences described in Tables 2 and 3 using various navigation strategies. For some of
these strategies, we limit the number of trajectory correction maneuvers (TCMs) and allow the
flyby sequences to be mostly ballistic. In these cases the trajectory will be less controlled, so the
flyby altitude errors will be allowed to become larger. The remainder of these navigation strategies
will include several TCMs, including TCMs in between flybys. Each of these navigation strategies
is tested via Monte Carlo simulation by applying gaussian perturbations to the nominal values of
the input random variables.

Statistical Maneuver Execution Error Model

In our statistical ∆V analysis, we model the statistics of the TCMs with an early maneuver
execution error model used for Cassini’s interplanetary trajectory by Goodson et al.31 We use this
model rather than the more refined models used later in the mission by Wagner and Goodson32

and Gist et al.33 because the spacecraft approaching Jupiter will likely have maneuver execution
errors more similar to the maneuver execution errors of the early Cassini mission rather than the
maneuver execution errors modeled after the end of Cassini’s prime mission. As in Raofi et al.,16

Goodson et al.,31 and Gist et al.,33 we use a spherical maneuver execution error model that was
developed by Gates.34 Gates’s maneuver execution model includes fixed and proportional errors for
the magnitude of each TCM and fixed and proportional errors for the angular components of each
TCM (i.e. pointing errors). These fixed and proportional magnitude and pointing errors are exactly
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Table 5. TCM: Maneuver Execution Error Model31

Error Type 1-σ Error

Fixed Magnitude 3.5 mm/s
Proportional Magnitude 2.0 %
Fixed Pointing 3.5 mm/s
Proportional Pointing 8.5 mrad

the same as Cassini’s RCS thruster error model used by Goodson et al. and are listed in Table 5.

The maneuver execution error model is incorporated into each Monte Carlo simulation after each
nominal TCM is calculated. Each nominal TCM ∆V vector is perturbed in its magnitude direction
and two pointing directions by adding gaussian, mean zero random variables with standard devia-
tions calculated from the nominal TCM ∆V and the errors in Table 5. If a navigation strategy uses
multiple TCMs, each nominal TCM is calculated and perturbed independently.

Monte Carlo Simulation Setup

We use the high-fidelity STK propagator described earlier in the paper to propagate the Monte
Carlo simulations. The Monte Carlo simulation begins a few days before the spacecraft’s first flyby.
The spacecraft’s nominal position is perturbed in all 3 directions by gaussian random errors with
standard deviations of 15 kilometers to simulate the a priori error in the spacecraft’s position with
respect to Jupiter. The spacecraft is then propagated until one day before its first flyby, which is
the maneuver epoch of TCM 1. The desired B-plane parameters of the first flyby of the sequence
are perturbed by a random error corresponding to the knowledge error of the spacecraft’s position
with respect to the first moon. (This knowledge error depends on whether a particular navigation
strategy uses OpNav or not.) These perturbed B-plane parameters are targeted using the three vector
coordinates of the ∆V vector. This nominal ∆V vector is then perturbed using the maneuver
execution error model to give the perturbed TCM 1 ∆V vector.

After the perturbed TCM 1 ∆V vector is applied to the trajectory one day before the first flyby,
the trajectory is propagated through the remainder of the sequence for ballistic navigation strategies
or until the desired time of TCM 2 for navigation strategies that include TCMs in between flybys.
For ballistic strategies, the B-plane errors of the subsequent flybys are the main results of the Monte
Carlo simulations. If these B-plane errors are too large, the spacecraft may have a substantial risk
of colliding with one of the Galilean moons. If the ballistic B-plane errors are acceptable for a
particular multiple-satellite-aided capture sequence, then this particular capture sequence would be
feasible with present navigation mechods and not depend on developing the operational ability to
plan and execute TCMs in between flybys.

The navigation strategies that involve TCMs in between flybys are characterized by the amount
of statistical ∆V required to execute these sequences and their operational difficulty. Navigation
strategies that include TCMs soon after a flyby would be more operationally difficult than strategies
that allowed more time for orbit determination and manevuer planning before the TCMs. However,
this extra operational time is offset by inceased statistical ∆V requirements if the trajectory is
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corrected later. Since it is difficult to quantify operational complexity in this context, we simply
provide a TCM’s maneuver time (in hours after flyby) as an informal operational complexity metric.
TCM 2 (or TCM 3 for triple-satellite-aided capture sequences) is computed and perturbed using the
same methodology as TCM 1. The process is repeated until the simulated spacecraft completes
its multiple-satellite-aided capture sequence. The spacecraft’s statistical ∆V usage, its maneuver
times, and its B-plane errors are recorded in a text file and the process is repeated 100 times to
extract useful ∆V and B-plane statistics for each sequence and strategy. Figure 2 summarizes the
order of events for these Monte Carlo simulations.

Initial State 
(At Jupiter 
approach 
Asymptote)

Gravity-
Assist 
Flyby of 
1st moon

TCM 1: 
1 day 
before

Gravity-
Assist 
Flyby of 
2nd moon

TCM 2: 
1.5-12.5 
hours 
before

Jupiter Ephemeris 
knowledge error: 15 
km in position in x, y, 
and z directions

Radiometric or OpNav
observations used to 
estimate target-relative 
position  

Trajectory Propagation using high-fidelity truth 
model

Key:
Description of Events at associated spacecraft 
position

Target, perturb, and execute TCM 
based on  target B-plane parameters

Galilean moons’ ephemeris 
knowledge error causes B•R 
and B•T target to be perturbed

Gravity-
Assist 
Flyby of 
3rd moon

TCM 3: 
1.5-7.5 
hours 
before

Figure 2. Flowchart for Monte Carlo simulations to estimate statistical ∆V of triple-
satellite-aided capture sequences. TCM 1 is in every simulation, but TCMs 2 and 3
are only used with certain navigation strategies.

MONTE CARLO RESULTS

Ballistic Navigation Strategies

Although the strategies we call “ballistic” do include TCM 1 before any of the flybys, the flyby
sequence itself is a ballistic flyby sequence because no TCMs occur during the sequence. Because
flyby errors propagate geometrically throughout each flyby sequence, the ballistic strategy relies on
minimizing the flyby error of the first flyby in a sequence to mitigate the errors in the subsequent
flyby(s). Two different orbital determination techniques are used for ballistic navigation strategies,
radiometric-only and OpNav-only. For both of these techniques, the spacecraft’s trajectory is de-
termined as precisely as possible a few days before the spacecraft’s first flyby. The covariances of
these trajectories are used to generate the B-plane errors that are used for targeting the first flyby
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with TCM 1 within the Monte Carlo simulation.

For radiometric navigation, the a priori position errors of the Galilean moons (5 km in each
direction) and the estimated position of the spacecraft with respect to Jupiter (using the radiometric
data) are incorporated into the B-plane error in the first flyby. (A derivation of B-plane parameters
is included in the appendix.) Because radiometric navigation allows more precise in-plane position
knowledge than out of plane position knowledge, the B · T error of the first flyby is 5 km and the
B·R error of the first flyby is 7 km. By adding optical navigation, the B-plane error of the first flyby
can be reduced to 2 km in the B ·T direction and 3 km in the B ·R direction. For both cases, once
TCM 1 is targeted (using the perturbed B-plane data) and perturbed using the maneuver execution
error model, the remainder of the trajectory is propagated and the B-plane errors are recorded.

For the nominal Callisto-Ganymede-Io-JOI triple-satellite-aided capture sequence described by
Table 3, the Monte Carlo simulation B-plane results are plotted in figure 3. Due to the geometric
propagation of errors for these ballistic sequences, 21 of the 100 Monte Carlo simulations for the
radiometric navigation case would result in the spacecraft crashing into Io. If optical navigation
is added, only 1 out of the 100 cases crashes into Io. Thus, ballistic triple-satellite-aided capture
strategies are clearly not feasible if only radiometric navigation is used. Even if optical navigation
is also used, there is still a substantial collision risk for our nominal trajectory. The collision risk
could be lowered if the Io flyby had a higher nominal altitude, but that strategy would still require
a substantial amount of statistical ∆V to fix the B-plane errors, reducing the ∆V savings from
using triple-satellite-aided capture. For the above reasons, ballistic strategies for triple-satellite-
aided capture are not recommended.

Ballistic navigation is much more effective for double-satellite-aided capture sequences because
they are less sensitive to initial conditions. For our nominal Ganymede-Io-JOI sequence, both the
radiometric-only ballistic navigation strategy and the combined radiometric and optical navigation
strategy were effective enough to prevent spacecraft collisions with Io. Figure 4 shows the Io B-
plane errors for the 100 Monte Carlo simulations for both navigation strategies. These results show
that ballistic strategies are feasible for double-satellite-aided capture sequences (within the assump-
tions of our models). Since current radiometric and optical navigation techniques are thus sufficient
to navigate double-satellite-aided capture, the development of advanced navigation technologies or
operational capabilities is not necessary (although it would be beneficial) for navigating double-
satellite-aided capture sequences.

Navigation Strategies with Multiple TCMs

Since ballistic navigation strategies are risky for triple-satellite-aided capture and feasible but
not optimal for double-satellite-aided capture, we investigate navigational strategies that involve
trajectory correction maneuvers in between flybys. For our nominal trajectories, the spacecraft
would travel for about 17 hours between its flybys of Callisto and Ganymede, and about 10.5 hours
between its flybys of Ganymede and Io. Cassini’s double flybys had transfer durations of between
1.5 and 2 days (36 and 48 hours) in between flybys,35 but TCMs were not used after the first flyby to
target the final flyby because the Cassini mission only used TCMs that occurred at least 2 or 3 days
after a flyby. In order to implement TCMs in between flybys for multiple-satellite-aided capture
sequences, we assume an autonomous flyby navigation or a ground-based flyby navigation that is
much faster than Cassini’s navigation.

Since the TCMs allow for precise targeting of each flyby (usually within 10 kilometers), the
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Figure 3. Io B-plane results for ballistic navigation strategies for CGIJ triple-satellite-
aided capture sequences. The bold circles represent the B-plane results for combined
optical and radiometric navigation. The X’s represent the B-plane results for only ra-
diometric navigation. Even with combined radiometric and optical navigation, these
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primary results of these Monte Carlo simulations are the total ∆V amounts that are required to
execute the targeted TCMs instead of the B-plane errors of the last flyby. The extra TCM(s) could
be placed at any time between the flybys, so we picked a variety of possible manuever(s) times and
ran a separate 100-run Monte Carlo simulation for each of them.

Triple-satellite-aided capture. For our nominal Callisto-Ganymede-Io-JOI (CGIJ) triple-satellite-
aided capture sequence, we chose 36 different sets of maneuver times with the times of TCMs 2 and
3 independently ranging from 3.5 hours to 8.5 hours after the first and second flyby, respectively.
We chose 3.5 hours as a minimum because it takes 30–50 minutes for light (e.g. radiometric infor-
mation) to travel from Jupiter to Earth, some computational time to process that information into
usable radiometric observables, some computational time to calculate an orbit determination solu-
tion, some computational time to target the TCM, some human decision-making time, and 30–50
minutes to upload the maneuver command to the spacecraft. Although this process could theoreti-
cally be completely automated on the ground with arbitrarily powerful computers and take less than
2 hours, we assume 3.5 hours after the flyby as a minimum to give some margin for error. (Addi-
tionally, autonomous flyby navigation could allow the TCM to be placed at any time during or after
the flyby.) We use 8.5 hours as a maximum because the Io flyby is 10.5 hours after the Ganymede
flyby and TCMs too close to the next flyby become inefficient.

Just like with the ballistic navigation simulations, we use both a radiometric-only navigation strat-
egy and a combined radiometric and optical navigation strategy to simulate these flyby sequences.
For radiometric navigation, the B ·T error of the first flyby is 5 km and the B ·R error of the first
flyby is 7 km. For the second and third flybys, the B·R error becomes 5 km because the radiometric
observations of the first flyby improves the out-of-plane knowledge of the spacecraft and of Jupiter.
With the combined radiometric and optical navigation strategy, the B-plane error of the first flyby is
2 km in the B ·T direction and 3 km in the B ·R direction. These errors are slightly reduced for the
second (1.5 km and 2.3 km) and third (2 km and 2.3 km) flybys. (The Io B ·R error is slightly larger
than the Ganymede error because Ganymede’s ephemerides are better determined from optical ob-
servation than Io’s, see Figure 1.) For both of the navigation strategies, TCMs 1 and 2 are used to
target the Callisto and Ganymede B-planes, respectively, that minimize the Io B-plane error from its
nominal value rather than targeting the nominal Callisto and Ganymede B-planes. This strategy can
save a substantial amount of statistical ∆V versus sequentially targeting the nominal B-planes of all
three moons. Since there are 36 Monte Carlo simulations for both radiometric-only and combined
radiometric and optical, there are a total of 72 sets of 100 Monte Carlo simulations. For each set
of Monte Carlo simulations, we give the median amount of statistical ∆V required to navigate the
CGIJ sequence. For the radiometric-only sets, we record the median total statistical ∆V in Table 6.
For the combined radiometric and optical sets, we record the median total statistical ∆V in Table 7.

We note that the median statistical ∆V results in Tables 6 and 7 indicate that only a small amount
of statistical ∆V is required to navigate triple-satellite-aided capture sequences if the spacecraft is
capable of implementing TCMs in between flyby. The deterministic ∆V savings in the JOI maneu-
vers of triple-satellite-aided capture sequences (see Table 1) more than offsets the small amount of
statistical ∆V required for these TCMs.

Double-satellite-aided capture. Even though ballistic navigation methods can effectively navi-
gate double-satellite-aided capture sequences, inserting an extra TCM in between the two flybys
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Table 6. Median statistical ∆V results for radiometric-only navigation of CGIJ sequence.

TCM 2 timea

TCM 3 timeb 3.5 hrs 4.5 hrs 5.5 hrs 6.5 hrs 7.5 hrs 8.5 hrs

3.5 hrs 3.93 m/s 4.28 m/s 4.17 m/s 4.44 m/s 5.19 m/s 5.43 m/s
4.5 hrs 3.90 m/s 4.67 m/s 4.52 m/s 5.05 m/s 5.47 m/s 5.86 m/s
5.5 hrs 4.48 m/s 4.95 m/s 4.83 m/s 5.20 m/s 5.44 m/s 6.19 m/s
6.5 hrs 5.40 m/s 5.14 m/s 5.30 m/s 5.90 m/s 5.96 m/s 6.52 m/s
7.5 hrs 5.85 m/s 6.24 m/s 6.16 m/s 6.43 m/s 6.79 m/s 7.77 m/s
8.5 hrs 7.49 m/s 7.69 m/s 8.20 m/s 8.59 m/s 8.46 m/s 8.62 m/s

a TCM 2 times (column headings) are in hours after closest approach to Callisto.
b TCM 3 times (row headings) are in hours after closest approach to Ganymede.

Table 7. Median statistical ∆V results for radiometric-only navigation of CGIJ sequence.

TCM 2 timea

TCM 3 timeb 3.5 hrs 4.5 hrs 5.5 hrs 6.5 hrs 7.5 hrs 8.5 hrs

3.5 hrs 1.71 m/s 1.86 m/s 1.85 m/s 2.00 m/s 2.13 m/s 2.28 m/s
4.5 hrs 1.73 m/s 1.84 m/s 2.11 m/s 2.22 m/s 2.12 m/s 2.31 m/s
5.5 hrs 2.00 m/s 2.01 m/s 2.16 m/s 2.29 m/s 2.47 m/s 2.54 m/s
6.5 hrs 2.08 m/s 2.30 m/s 2.31 m/s 2.43 m/s 2.46 m/s 2.72 m/s
7.5 hrs 2.56 m/s 2.61 m/s 2.60 m/s 2.84 m/s 2.90 m/s 3.02 m/s
8.5 hrs 3.12 m/s 3.13 m/s 3.43 m/s 3.28 m/s 3.38 m/s 3.56 m/s

a TCM 2 times (column headings) are in hours after closest approach to Callisto.
b TCM 3 times (row headings) are in hours after closest approach to Ganymede.
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Table 8. Median statistical ∆V results for navigation of GIJ sequence.

TCM 2, time after Ganymede flyby 3 hrs 4 hrs 5 hrs 6 hrs 7 hrs 8 hrs

Radiometric-only 2.45 m/s 2.76 m/s 3.14 m/s 3.71 m/s 4.81 m/s 6.11 m/s
Radiometric and OpNav 1.67 m/s 1.90 m/s 2.17 m/s 2.50 m/s 3.43 m/s 5.24 m/s

allows for more control over the flyby conditions of the second flyby. For the nominal Ganymede-
Io-JOI sequence, the extra TCM reduces the maximum flyby B-plane error of the Io flyby from
about 100 km to less than 20 km for radiometric-only navigation. The statistical ∆V cost of this
extra TCM is smaller than the extra 2 TCMs in the CGIJ triple-satellite-aided capture sequence
and is recorded for both the radiometric-only strategy and the combined radiometric and optical
navigation strategy for several different times of TCM 2 in Table 8.

DISCUSSION

We note that this paper represents an initial attempt to solve the navigation problem for multiple-
satellite-aided capture sequences. As such, these results must be analyzed within their proper con-
text. Although the force model used to integrate these trajectories had a high degree of fidelity
for a deterministic nominal trajectory, it did not incorporate unmodeled accelerations. Further, the
low-order covariance analysis did not take into account the complexities of radiometric and optical
navigation. For example, we ignored the large amount of data processing necessary to obtain range
and range-rate observables from radiometric data. We also substantially simplified the optical navi-
gation process by assuming angular data with a certain fixed angular covariance instead of modeling
the complex image processing required to transform an OpNav picture to usable angular data. Ad-
ditionally, we assumed that all of the errors in the observables and maneuver execution errors had
a gaussian distribution. We also did not incorporate practical complexities such as moon visibility,
star tracking, solar conjunction, Jupiter eclipsing its moons, or moons blocking radio signals.

The statistical ∆V analysis also contains a variety of simplifications. Instead of using several
TCMs to correct the trajectory before the first flyby, we assume that all of the corrections are incor-
porated into TCM 1 a day before the first flyby. We also artificially perturb the trajectory to simulate
the ephemeris errors instead of perturbing the ephemerides themselves. This artificial method of es-
timating the statistical ∆V decreased the fidelity of these results and did not allow the testing of
several potential strategies for navigating these sequences, including using 2 TCMs before the first
flyby: the first TCM to target the desired position of the second TCM.35 Additionally, in our analysis
of navigation strategies that included TCMs in between flybys, we assumed the operational capacity
to perform orbit determination, target a TCM, and execute that TCM within a much shorter amount
of time than the minimum amount of time used by cassini.35

CONCLUSIONS

Multiple-satellite-aided capture uses gravity assists of several of Jupiter’s Galilean moons to cap-
ture a spacecraft into orbit around Jupiter. We motivated the navigation analysis of these trajectories
by presenting the deterministic ∆V savings available for future missions to Jupiter that would use
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multiple-satellite-aided capture. The main challenge in the navigation of these sequences is that
small flyby errors in the first flyby of these sequences cause much larger flyby errors in subsequent
flybys. Additionally, the flybys occur in rapid succession so it is operationally difficult to correct
the trajectory by inserting trajectory correction maneuvers (TCMs) in between flybys.

Two direct trajectories from Earth to Jupiter capture were used as nominal trajectories for this
navigational analysis: a Callisto-Ganymede-Io-JOI triple-satellite-aided capture sequence and a
Ganymede-Io-JOI double-satellite-aided capture sequence. A low-order covariance analysis was
performed on these nominal trajectories using simulated radiometric and optical observables to es-
timate the initial flyby errors. The results of this low-order covariance analysis were incorporated
into Monte Carlo simulations that used a variety of navigation strategies.

With these Monte Carlo simulations, we showed that double-satellite-aided capture is likely fea-
sible with current navigation technology using the ballistic strategy without any TCMs in between
flybys. We also showed that the statistical ∆V required to precisely navigate double- or triple-
satellite-aided capture sequence is low if the navigational and operational capacity to implement
TCMs in between flybys is developed. Because of the deterministic ∆V savings of these multiple-
satellite-aided capture sequences and their demonstrated navigational feasibility, we recommend
that multiple-satellite-aided capture be strongly considered for future Jupiter missions.
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APPENDIX: DEFINING B-PLANE PARAMETERS

We use a B-plane parameters to characterize the flyby errors in these sequences rather than simply
flyby altitudes in order to take out-of-plane errors into account. The spacecraft has two B-plane
parameters that are used to characterize each flyby: B · T and B · R. (This description of the
B-plane is similar to that given by Macdonald and McInnes.5) In Fig. 5, the B-plane parameters are
defined. The S vector is defined as a unit vector parallel to the spacecraft’s incoming hyperbolic
asymptote (with respect to the moon, not Jupiter). The T vector is defined as the normalized cross
product of the S vector and the moon’s orbit normal, N:

T =
S×N

|S×N|
(1)

B •T
B • R

B

R=S x T

T=(S x N)/|S x N|

S

Periapsis
vector

Incoming  
moon-centered 
asymptote

B-plane

Parallel to incoming 
asymptote

N

Moon’s orbit
normal

Figure 5. A graphical depiction of the B-plane used to describe the spacecraft’s flyby
of a Galilean moon.

As illustrated in Fig. 5, the R vector is orthogonal to T and S such that

R = S×T (2)

The B-plane is a plane defined by the R and T vectors and centered at the moon’s center of mass.
The B-plane is, by definition, perpendicular to the incoming moon-centered asymptote. The B vec-
tor is the distance from the center of mass of the moon to the incoming moon-centered asymptote’s
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intersection with the B-plane (as shown in Fig. 5). The B-plane parameters, B · T and B ·R, are
the two components of the B vector in the T and R directions, respectively.

Since all of these multiple-satellite-aided capture trajectories are nearly within Jupiter’s equatorial
plane, S is nearly perpendicular to N such that N and R are nearly anti-parallel. Under the anti-
parallel assumption, B · T is defined as the equatorial component of B and B ·R as the polar or
out-of-plane component of B. Hence, a flyby with a B · T component of zero and a large B · R
component would be a polar flyby. Similarly, a flyby with a large B · T component and a B · R
component of zero would be an equatorial flyby. Jupiter’s Galilean moons are all tidally locked, so
their orbit planes are parallel to their equatorial planes. Within the Monte Carlo simulations, the
gaussian B-plane targeting errors are estimated for each navigation strategy by using the position
covariance of the spacecraft relative to the Galilean moons.
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