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Multiple-satellite-aided capture employs sequential gravity-assist flybys of more than one of Jupiter’s Galilean
moons. These flybys substantially reduce the amount of propellant required for a spacecraft to capture into or-
bit around Jupiter. The “average” plane of the Galilean satellites constrains the arrival V-infinity vector, which
in turn constrains the interplanetary trajectories from Earth to Jupiter. The solution space of interplanetary
trajectories that permit multiple-satellite-aided capture is explored, and trajectories that start from Earth and
end at Jupiter capture are integrated.

I. Introduction

Satellite-aided capture is a mission design technique that is used to decrease the ∆V required to capture a space-
craft into orbit around a planetary body. The technique employs gravity-assist flybys of massive satellites of a planetary
body, so only missions to planets with large moons can benefit from this technique. Hence, satellite-aided capture is
only available to Earth-return missions and missions to Jupiter, Saturn, Uranus, or Neptune. Jupiter, in particular, has
four massive Galilean moons that can be used for satellite-aided capture. These satellite-aided capture trajectories
were first proposed for missions to Jupiter by Longman1 and by Longman and Schneider.2 Cline3 determined the
best use of a Ganymede gravity-assist to minimize the Jupiter insertion maneuver (JOI) ∆V required for capture into
Jupiter orbit.

Nock and Uphoff4 performed a tour-de-force of satellite-aided capture trajectories for the entire Solar System by
varying several trajectory parameters, including perijove radius after flyby, flyby altitude, declination of the incoming
satellite-centered hyperbola, and the distribution of ∆V between powered satellite flybys and the JOI maneuver.
They also briefly investigated double-satellite-aided capture by determining the phasing and transfer orbit parameters
necessary to achieve capture. Malcolm and McInnes5 employ a vectorial targeting approach to solve the satellite-aided
capture problem. Yam6 and Okutsu et al.7 present a central-body-changing algorithm that can model a satellite-aided
capture using a patched-conic method. The algorithm accepts a planet-centered V∞ vector and a moon’s radius vector
as input and outputs the phase angle between the incoming Jupiter-centered asymptote and the flyby. Landau et al.8

proposed using solar electric propulsion (SEP) to reduce the Jupiter arrival V∞ of interplanetary trajectories in order to
ballistically capture an SEP spacecraft into orbit about Jupiter with gravity assists of one or two of Jupiter’s Galilean
moons.

The first implementation of a single-satellite-aided capture occurred during the Galileo mission to Jupiter.9 Two
proposed NASA missions to Jupiter (the Europa Orbiter Mission10–12 and the Jupiter Icy Moons Orbiter13) had de-
signed single-satellite-aided capture trajectories using Ganymede and Callisto, respectively. The planned Jupiter Eu-
ropa Orbiter mission has a nominal trajectory that includes an Io-aided capture.14 Lynam et al.15 proposed the use
of double-, triple-, or quadruple-satellite-aided capture as another method of capturing a spacecraft into orbit around
Jupiter with still lower ∆V cost. That study focuses on the Jupiter capture phase of these trajectories and only briefly
discusses the interplanetary trajectory phase of these missions. In this paper, we connect several of the multiple-
satellite-aided capture sequences designed by Lynam et al. with interplanetary trajectories to form complete trajec-
tories from Earth launch to Jupiter capture. Figure 1 shows a complete trajectory that begins at Earth launch and
then performs gravity-assist flybys of Ganymede and Io as it approaches Jupiter. We also determine how often some
of these capture trajectories are available for use in a future mission and how much total mission ∆V can be saved.
As in Lynam et al., we assume that the (non-trivial) navigational challenges associated with these trajectories can be
surmounted.
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Figure 1. A schematic of a trajectory from Earth to Jupiter that uses gravity-assist flybys of Ganymede and Io to reduce the ∆V required
to capture into orbit around Jupiter.

II. Patched-Conic Method

The ∆V savings of multiple-satellite-aided capture justify the effort required to find interplanetary trajectories that
make use of such sequences. Lynam et al.15 used a patched-conic method to calculate the ∆V required for the best
multiple-satellite-aided capture trajectories using one, two, three, or four of Jupiter’s Galilean moons. A compilation
of their results is compared with the ∆V required for unaided capture (i.e. with no gravity assists) in Table 1.

Table 1. ∆V for Best Jupiter Capture Sequences Using Gravity Assists of No Moons, One Moon, or Multiple Moonsa, m/s

JOI (5 RJ) JOI (4 RJ) JOI (3 RJ) JOI (2 RJ) JOI (1.01 RJ)
Flyby Sequences ∆V, m/s ∆V, m/s ∆V, m/s ∆V, m/s ∆V, m/s

Unaided 825 735 641 524 371
Best Single 556 526 483 416 308
Best Double 330 340 333 299 228
Best Triple 202 232 245 234 190
Best Quadruple — — — 175 160
a Arrival V∞ is 5.6 km/s, flyby altitudes are fixed at 300 km, and the spacecraft captures
into a 200-day orbit. RJ=71,492 km.

As an example, the fourth row of Table 1 gives ∆V values for the best triple-satellite-aided capture sequences
at various perijoves (closest approach distances to Jupiter). The entry in column 1 of row 4 indicates that the best
triple-satellite-aided capture sequence with a perijove of 5 Jupiter radii has a Jupiter orbit insertion (JOI) ∆V of 202
m/s. This sequence saves about 75% of the ∆V cost of unaided capture at that particular perijove, so it is the most
efficient sequence at reducing ∆V . If three consecutive 10-km flybys (rather than the safer 300-km flybys given in the
table) of Ganymede, Io, and Callisto could be safely executed, this sequence could capture a spacecraft into a 560-day
orbit without any deterministic ∆V .

III. STK Trajectory Integration

Lynam et al.15 used the patched-conic results as initial guesses for high-fidelity integration. They integrated these
multiple-satellite-aided-capture trajectories using AGI’s STK software.16 In order to simplify the problem, they began
the integration from an arbitrary initial state inside Jupiter’s sphere-of-influence, propagated the gravity-assist flybys
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of each of the targeted moons, modeled a Jupiter orbit insertion (JOI) maneuver, and ended the trajectory at a point
inside the spacecraft’s capture orbit. Since the initial state of the spacecraft was arbitrary, the modeled spacecraft could
approach Jupiter from any direction. Hence, most of these trajectories could not originate from Earth and thus are not
available to actual Jupiter missions. Lynam et al.15 did create a few “petal plots” to quickly rule out flyby sequences
that have no chance of connecting to an interplanetary trajectory, but they did not actually integrate any transfers from
Earth. In this paper, these rough petal plots are used as a first step to determine which multiple-satellite-aided-capture
trajectories may have a chance of connecting to an interplanetary trajectory from Earth. These selected trajectories are
then modified via STK such that they can be back-propagated to an Earth encounter.

A. Propagation Model and Initial State

We define a spacecraft propagation model for the Jupiter-centered regime that is the same as that used by Lynam et
al.15 This model includes the best known gravity fields of the Sun, Jupiter, and the Galilean moons.17− 20 General
relativity perturbations and solar radiation pressure perturbations were added to the propagator to increase its fidelity.
The high-fidelity of this propagator was necessary because of the dynamic sensitivity of these multiple-satellite-aided
capture sequences.15 Before the spacecraft approaches Jupiter, the fidelity of the trajectory is not as important because
interplanetary trajectories are not as dynamically sensitive and they can be easily navigated. Thus, for the interplane-
tary trajectory, we use a heliocentric propagation model that includes only the point-mass gravity of the Sun and the
eight planets.

The initial state of the STK trajectory is defined as a point in a hyperbolic orbit a few days before the spacecraft
approaches Jupiter. STK’s “target vector incoming asymptote” coordinate system is used to define this initial state.
As illustrated in Fig. 2, the target vector incoming asymptote coordinate system includes four angular coordinates
(declination, right ascension, velocity azimuth at perijove, and true anomaly), one distance coordinate (radius of
perijove), one energy coordinate (C3), and the initial time (Epoch). The incoming V∞ vector is described in terms
of its spherical components: its magnitude is described by the square root of C3 and its direction is described by the
declination and right ascension angles in Fig. 2. (Even though they do not have incoming asymptotes, elliptical orbits
can also be defined in this system: the declination and right ascension angles of an elliptical orbit describe the direction
of a vector pointing toward an elliptical orbit’s apoapsis and the negative C3 value of an elliptical orbit can be used
to determine its semi-major axis.) Another coordinate, the radius of perijove, is the scalar distance between Jupiter’s
center and the spacecraft’s position at closest approach (before any of the flybys modify the perijove of the spacecraft).
A third angular coordinate, the velocity azimuth at perijove, describes the angle between the z-axis of the reference
system and the velocity vector of the spacecraft at perijove. The fourth and final angular coordinate is true anomaly
which defines the angular distance from the spacecraft at the initial time (Epoch) to its perijove. Each of the seven
coordinates that represent the spacecraft’s initial state can be used as control parameters within targeting sequences.

B. Defining B-plane parameters

Double satellite-aided capture sequences can be precisely targeted within STK by using the B-plane parameters of
the two moons as target variables. The spacecraft is propagated from its initial state to its periapsis (closest approach
distance) with respect to the first moon in the sequence. At periapsis, the spacecraft has two B-plane parameters
that are used to characterize each flyby: B · T and B · R. (This description of the B-plane is similar to that given
by Malcolm and McInnes.5) In Fig. 3, the B-plane parameters are defined. The S vector is defined as a unit vector
parallel to the spacecraft’s incoming hyperbolic asymptote (with respect to the moon, not Jupiter). We define the T
vector as the normalized cross product of the S vector and the moon’s orbit normal, N:

T =
S×N

|S×N|
(1)

As illustrated in Fig. 3, the R vector is orthogonal to T and S such that

R = S×T (2)

The B-plane is a plane defined by the R and T vectors and centered at the moon’s center of mass. The B-plane is,
by definition, perpendicular to the incoming moon-centered asymptote. The B vector is the distance from the center of
mass of the moon to the incoming moon-centered asymptote’s intersection with the B-plane (as shown in Fig. 3). The
B-plane parameters, B ·T and B ·R, are the two components of the B vector in the T and R directions, respectively.

Since all of the multiple-satellite-aided capture trajectories that we studied are nearly within Jupiter’s equatorial
plane, S is nearly perpendicular to N such that N and R are nearly anti-parallel. Under the anti-parallel assumption,
we informally refer to B ·T as the equatorial component of B and B ·R as the polar or out-of-plane component of B.
Under the aforementioned conditions, a flyby with a B ·T component of zero and a large B ·R component would be
a polar flyby. Similarly, a flyby with a large B ·T component and a B ·R component of zero would be an equatorial
flyby.
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Figure 2. A graphical depiction of the four states of the “seven-state” that is used to define “target vector incoming asymptote” coordinates
within STK. In addition to the four states that are depicted, there are Epoch (the spacecraft’s initial time), C3 (twice the specific orbital
energy), and True Anomaly (the angular position of the spacecraft within the orbit at Epoch)
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Figure 3. A graphical depiction of the B-plane used to describe the spacecraft’s flyby of a Galilean moon.
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Equatorial flybys cause the maximum change of a spacecraft’s Jupiter-centered orbital energy, while polar flybys
cause the maximum change of a spacecraft’s Jupiter-centered inclination. The objective of multiple-satellite-aided
capture is to minimize the required ∆V to capture a spacecraft into orbit around Jupiter. Since equatorial flybys
can maximally reduce the spacecraft’s Jovicentric orbital energy, they also maximally reduce the amount of Jupiter
orbit insertion(JOI) ∆V required to capture a spacecraft into orbit around Jupiter. Polar flybys are not useful within
multiple-satellite-aided capture sequences because they add complexity and dynamical sensitivity to the sequences
without significantly aiding in the capture process.

IV. Targeting Double-satellite-aided Capture Sequences

Double-satellite-aided capture sequences require the targeting of flybys of two of Jupiter’s Galilean moons. Since
the precise timing of these flybys is not critical, we describe the flyby conditions of each flyby using only the B-plane
parameters, B ·T and B ·R. Thus, executing two flybys requires four target variables: B ·T and B ·R for the first
moon and B · T and B ·R for the second moon. In order to precisely target these variables, we need to define four
control variables that can have a direct effect on the four target variables. We chose all four of these control variables
from the initial state: epoch, declination, right ascension, and velocity azimuth at perijove. (Since the initial state can
vary greatly during a targeting sequence, it is not prudent to constrain the initial state such that it must align with an
interplanetary trajectory at this stage of the problem.)

STK’s differential-corrector targeter varies each of the four control variables from the initial state until each of
the four B-plane parameters are precisely targeted. As discussed earlier in the “Defining B-plane parameters” section,
each flyby is maximally efficient at reducing JOI ∆V when it is equatorial, so the B ·R parameters of both flybys are
targeted to be zero. The B ·T parameters are chosen so that they are positive for inbound flybys (where the trajectory
is moving toward Jupiter) and negative for outbound flybys (where the trajectory is moving away from Jupiter) so that
they maximally decrease the orbital energy. In our simulations, the B ·T parameters are chosen to be consistent with
flybys that are constrained to have altitudes of exactly 300 kilometers for consistency, but this choice is somewhat
arbitrary and the flybys can be targeted to any altitude. (We note that all of the targeting described in this section refers
to the deterministic targeting of nominal trajectories that mission designers perform and not the statistical targeting of
trajectory correction maneuvers that navigators perform.)

The above procedure is only numerically effective if the flybys are either both inbound flybys or both outbound
flybys. If the desired trajectory sequence contains both an inbound and an outbound flyby, only three of the four
required B-plane parameters can be targeted. In this case, three of the control variables should be used to target three
of the B-plane parameters. The fourth control variable can either be manually modified to target the fourth target
variable or included within the upper-level targeter of a nested targeting sequence. (A nesting targeting sequence
would use one upper-level targeter to target one of the parameters and one lower-level targeter to target the other
three.) Once the targeting sequence for the two flybys converges within STK, a JOI maneuver is added to capture the
spacecraft into its desired capture orbit. In our simulation, we used 200-day capture orbits to reflect the capture orbit
that was used by Galileo9, but this period can also be modified by changing the ∆V magnitude of the JOI maneuver.

A. Interplanetary Trajectory Windows for Double-satellite-aided capture sequences

Interplanetary trajectories for these double-satellite-aided capture trajectories can be found by backward-propagating
(running STK’s propagators backward in time) the initial states of these trajectories until they reach Earth. Unfor-
tunately, a vast majority of the Jupiter-centered, double-satellite-aided capture trajectories will not reach Earth via
back-propagation. Each available interplanetary trajectory has a constrained Jupiter-centered arrival V∞ vector. The
double-satellite-aided capture targeting sequence separately constrains the Jupiter-centered arrival V∞ vector because
its right ascension and declination are used as control variables. Because satellite-aided capture cannot be implemented
on an actual space mission unless the spacecraft arrives at Jupiter from an interplanetary trajectory beginning at Earth,
multiple-satellite-aided capture sequences must be found whose V∞ vectors align with the V∞ vectors associated with
interplanetary trajectories from Earth. The remainder of this paper explores methods of aligning multiple-satellite-
aided capture sequences with interplanetary trajectories.

Since double-satellite-aided capture targeting sequences only require four of the initial state variables, two vari-
ables remain that can be used as control variables for targeting the interplanetary portion of these trajectories: C3

and radius of perijove. (True anomaly is not useful because true anomaly and epoch are not independent variables—
changing the true anomaly would only force the epoch to change and vice versa.) The first method we explore, “the
interplanetary-trajectory-window method”, involves varying only the radius of periapsis to (roughly) determine if it is
possible to align an interplanetary trajectory with a double-satellite-aided capture sequence for a given period of time.
This method narrows the set of all possible double-satellite-aided capture sequences to the set of all double-satellite-
aided capture sequences that could possibly align with an interplanetary trajectory. Once the set is narrowed, the
second method, “nested backward targeting”, uses both C3 and radius of perijove as control variables to backwards-
target Earth’s two B-plane parameters, thereby explicitly solving for the interplanetary trajectories that align with
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double-satellite-aided capture sequences.

The interplanetary-trajectory-window method is predicated on finding the right ascension angle of a V∞ vector
that corresponds to a Hohmann transfer that is near Earth’s orbital radius about the Sun. In this rough method, the
right ascension angle of an initial state is used to backward-target a heliocentric radius of perihelion that is equivalent
to Earth’s mean orbital radius. The right ascension angle whose backward-propagated interplanetary trajectory’s
perihelion is smallest is defined as the “Hohmann” angle at that particular epoch. Another Hohmann angle is found at
a later epoch, and we linearly interpolate to find the Hohmann angles that occur between the two epochs.

Next, two separate double-satellite-aided capture sequences are calculated: one with the minimum radius of peri-
jove near Jupiter’s atmosphere and one with the maximum radius of perijove near the orbital radius of the innermost
moon in the two-moon sequence. The corresponding two right ascension angles are recorded and subtracted from
the Hohmann angle at that particular epoch. This process gives the rough angular difference between the V∞ vectors
for these two sequences and the V∞ vector for a Hohmann transfer at this epoch. The subtraction is equivalent to
transforming the right ascension angles into the Sun-Jupiter rotating frame, so new angles are called “normalized right
ascension” angles.

The normalized right ascension angles for the maximum and minimum perijove solutions of a Ganymede-Io se-
quence are plotted as the edges of the triangles that represent each flyby window in the polar “petal” plot in Fig. 4. We
interpolate the continuum of solutions for radii of perijove (and consequently normalized right ascension angles) that
are between the maximum and minimum perijoves. This continuum is represented by the area inside each of the petals
in Fig. 4. For Ganymede-Io-satellite-aided capture sequences, there are three unique interplanetary trajectory windows
every week that are shifted about 120 degrees from each other. Since the right ascension angles are normalized, we can
easily determine that an interplanetary trajectory is unavailable during this time period (July 11-July 23) because none
of the of the triangular petals encompass the region around the Hohmann angle (of zero degrees). However, the petals
precess by about 6 degrees every week (due to the Laplace resonance and the orbit of Jupiter around the Sun), so we
know that an interplanetary trajectory will become available within about 8 weeks.15 Additionally, there are three other
Ganymede-Io double-satellite-aided capture sequences that can be propagated backward to Earth: Ganymede-JOI-Io,
Io-JOI-Ganymede, and JOI-Io-Ganymede. (We also note that Ganymede-JOI-Io could be sequenced as a Ganymede
flyby, perijove, Io flyby, JOI maneuver sequence to avoid having a JOI maneuver between flybys.) One of these four
Ganymede-Io flyby sequences is available at virtually any Jupiter arrival date, so double-satellite-aided capture is
almost always possible for any Jupiter mission.

July 11
window opens

July 11 
window closes

July 13 
window opens

July 13 
window closes

July 15−16
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July 15−16
window closes

July 18
window closes
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Figure 4. Polar plot of the normalized right ascension angles of Ganymede-Io-JOI flyby windows. The Jupiter-Sun line points downward.
The area near the Hohmann right ascension angle (shaded region) is not encompassed by a (triangular) petal, so a Ganymede-Io-JOI
capture sequence is not available for an interplanetary trajectory from Earth during this arrival time frame. The petals rotate about 6
degrees every week, so a Ganymede-Io-JOI sequence will become available in about 8 weeks.
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B. Nested Backward Targeting for Double-satellite-aided Capture Sequences

Once the interplanetary-trajectory-window method provides a window that encompasses the area around the Hohmann
angle, a more precise nested backward targeting method is used to solve for an interplanetary trajectory that aligns
with a double-satellite-aided capture sequence. A flowchart of this method is given in Fig. 5. The large blue arrows
in Fig. 5 represent the flow of time of the spacecraft: it starts at Earth, propagates to an initial state at an incoming
asymptote near Jupiter, propagates to the first flyby of a double-satellite-aided capture sequence, and then propagates
to the second flyby. The small black arrows describe the targeting algorithm within STK. Four of the variables within
the initial state are used to target the four B-plane parameters that describe the two flybys. This targeting sequence
occurs via forward propagation and is the inner loop of the nested targeter. Two of the variables within the initial state
(C3 and radius of perijove) are used to backward target the two B-plane parameters of Earth within the upper loop of
the nested targeter. (Thus, each time theC3 or radius of perijove is changed in the outer loop, the double-satellite-aided
capture sequence in the inner loop must be re-solved.)

Initial State 
(At Jupiter 
approach 
Asymptote:

Epoch (UTC)
Right Ascension (deg)
Velocity Azimuth (deg)
Declination (deg)
Predicted Rp (km)
C3 (km^2/s^2)

First Moon’s 
Flyby

B•T (km)
B•R (km)
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Moon’s Flyby
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Target
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Target
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Control to Target
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Figure 5. A flowchart describing both the trajectory propagation (large blue arrows) and the numerical targeting (small black arrows) of
a mission from Earth to Jupiter that uses a double-satellite-aided capture sequence.

One of the only problems with the nested backward targeting method is that it requires a good initial guess to
converge within a reasonable amount of time (due to numerical problems within STK’s targeter). We circumvent this
problem by using a manual targeting method for finding initial guesses that are close to the actual solutions and then
applying the nested backward targeting method. We varied the C3 and radius of perijove manually, recorded the back-
propagated B-plane parameters of Earth, and interpolated to find a good initial guess. This rough interpolation gave
a good enough initial guess to obtain convergence within the nested backward targeter for a trajectory that began at
Earth with specified B-plane parameters. The encounter parameters of this converged trajectory are given in Table 2.

Table 2. Integrated GIJ Flyby Sequence: Flyby Parameters

Encounter Times (UTC) Encounter Θ (deg) B ·R (km) B · T (km)

15 June 2022 4:29 Earth 0.0019 0.680 19998.1
29 Aug 2024 19:19 Ganymede 0.0 0.0 2967
30 Aug 2024 5:48 Io 0.0 0.0 2175

JOI Time (UTC) Rp (RJ) ∆V (m/s) Capture Orbit Period (days)

30 Aug 2024 10:05 2.0439 347.22 200

The converged trajectory in Table 2 notably requires no deterministic ∆V between Earth departure and the
Ganymede-Io flyby sequence. The spacecraft does, however, require a ∆VJOI of 347 m/s in order to capture into
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a 200-day orbit after it executes its two flybys.

V. Targeting Triple-satellite-aided Capture Sequences

Targeting triple-satellite-aided capture sequences is computationally more difficult than targeting double-satellite-
aided capture sequences. Each of the four Galilean moons orbit Jupiter with slightly different inclinations, so it is
unlikely that three flybys would occur within the same orbital plane. The initial state can specify the plane of the first
and second flybys. In order to find a third flyby, the second flyby must be able to change the plane of the trajectory such
that the new plane is coplanar with the second and third flybys. Thus, the second flyby is rarely an efficient equatorial
flyby with a B ·R of zero. Instead, part of the second gravity-assist flyby’s equivalent ∆V (the part associated with its
B ·R component) changes the inclination of the spacecraft’s orbital plane and part of the second gravity-assist flyby’s
equivalent ∆V (the part associated with its B ·T component) reduces the orbital energy of the spacecraft in order to
minimize the required ∆VJOI .

The targeting process for triple-satellite-aided capture sequences involves a nested inner loop that targets the first
and second flybys of the sequence and a nested outer loop that targets the third flyby of the sequence. The inner loop
uses the same initial state control variables that double-satellite-aided capture sequences use: epoch, declination, right
ascension, and velocity azimuth at perijove. The outer loop uses the radius of perijove at the initial state and the B ·R
component of the second flyby to target the two B-plane components of the third flyby. Because one of the B-plane
components of the first two flybys is used to target the third, only five of the initial states are needed to target the
triple-flyby sequence. Thus, the control variable C3 is still available to backward target interplanetary trajectories.

A. Interplanetary Trajectory Windows for Triple-satellite-aided Capture Sequences

A slightly modified version of the “interplanetary trajectory window” method is available for triple-satellite-aided
capture sequences. Since the radius of perijove is used as a control variable in the targeting of the third flyby of these
sequences, full “windows” of solutions are not available. Instead, only a few unique solutions are available during a
given time period. Figure 6 shows the normalized right ascension angles for Callisto-Ganymede-Io-JOI triple-flyby
sequences for the date range from August 2023 to May 2024. (There do not exist any Callisto-Ganymede-Io-JOI
sequences for 1.5 years prior to this date range or 1.5 years after this date range.15) Since none of these sequences
have normalized right ascension angles that are near the Hohmann angle, near-Hohmann interplanetary transfers are
not available. However, modifying the C3 of the sequence that has the closest normalized right ascension angle to zero
does permit a less ideal interplanetary trajectory to be found.

Varying the C3 to larger values (which drastically increases the JOI ∆V required for capture) can enable the triple-
satellite-aided capture trajectory to align with an interplanetary trajectory. However, a deep-space maneuver (DSM)
is needed to back-target the trajectory to specified B-plane parameters. The total ∆V required for this trajectory was
607 m/s which is far greater than the 347 m/s that was required for the double-satellite-aided capture trajectory.

B. Interplanetary Trajectories for Laplacian Triple-satellite-aided Capture Sequences

Another class of capture sequences are the Laplacian triple-satellite-aided capture sequences.15 These sequences do
not use Callisto gravity assists and are designed by exploiting the dynamics of the Laplace resonance among Io,
Europa, and Ganymede.15,21–23 The Laplace resonance is a perfect 1:2:4 orbital resonance, so the various types of
triple-satellite-aided capture sequences always have the same perijove: Ganymede-Io-JOI-Europa and Europa-JOI-Io-
Ganymede sequences have perijoves of around 2.1RJ while Ganymede-Europa-JOI-Io and Io-JOI-Europa-Ganymede
sequences have perijoves of around 1.15 RJ. (For details see Table 8 of Lynam et al.15) The Laplace resonance
precesses in the Jupiter-Sun rotating frame by about 6 degrees per Laplace resonance period (7.05 days), so each
of the four sequences align with a Hohmann transfer about once every 60 weeks. Additionally, there are several
trajectories that are close to a Hohmann that can be optimized to find the minimum DSM ∆V required to backward
target a Laplacian triple-satellite-aided capture sequence to Earth.

A set of four Ganymede-Io-JOI-Europa capture sequences (each with perijoves that are about 7 days apart) near
the Hohmann region were used as example trajectories. For a fixed C3 value of 33.0625 km2/s2, the back-propagated
Earth B-plane parameters of these four trajectories are given in Table 3. The August 30 trajectory is the best trajectory
(i.e. will require the lowest ∆V ) because the B-plane parameters are closest to zero (although they are still much too
large for a gravity assist of Earth). Next, the C3 value of the August 30 trajectory is varied to reduce the magnitude
of the back-propagated B-plane paramters. Once an optimal C3 is found, a deep-space maneuver (DSM) is added 0.2
years before the spacecraft approaches Jupiter to backward-target a more precise Earth B-plane. The final converged
interplanetary trajectory has a DSM with a ∆V of 39 m/s and a JOI maneuver with a ∆V of 327 m/s. The total mission
∆V is thus about 367 m/s. (We note that the final row of Table 3 lists B-plane parameters in kilometers while the top
seven rows list them in millions of kilometers.)
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Figure 6. Polar plot of the normalized right ascension angles of Callisto-Ganymede-Io-JOI flybys. Note that (unlike in Fig. 4) only unique
solutions exist (lines) not continua of solutions (petals). None of the trajectories have normalized right ascension angles within the area
near the Hohmann right ascension angle (shaded region), so a Callisto-Ganymede-Io-JOI capture sequence is not available for a Hohmann
interplanetary trajectory from Earth during this arrival time frame. However, a less ideal interplanetary trajectory can still be found.

Table 3. Backward-propagated GIJE Flyby Sequences

Perijove Time (UTC) Perijove (RJ) C3 (km2/s2) Earth B ·R Earth B · T
(km× 106) (km× 106)

16 Aug 2024 7:43 2.1201 33.0625 0.949 47.0
23 Aug 2024 8:57 2.1199 33.0625 1.35 18.7
30 Aug 2024 10:10 2.1198 33.0625 -3.29 10.5
6 Sep 2024 11:23 2.1191 33.0625 -4.74 52.8
30 Aug 2024 10:10 2.1182 34.0625 -1.05 0.425
30 Aug 2024 10:10 2.1180 34.2125 -3.29 10.5
30 Aug 2024 10:10 2.1177 34.4125 0.0273 -11.0

Perijove Time (UTC) Perijove (RJ) C3 (km2/s2) Earth B ·R (km) Earth B · T (km) Total ∆V (m/s)

30 Aug 2024 10:10 2.1190 34.4125 0.0427 20000 366.58
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C. Quadruple-satellite-aided Capture

Interplanetary trajectories for quadruple-satellite-aided capture are possible but rare. Only one quadruple-satellite-
aided capture sequence has been discovered so far and it did not align with an interplanetary trajectory.15 We estimate
the frequency of possible quadruple-satellite-aided capture sequences using the following reasoning. Each of the eight
possible quadruple-satellite-aided capture sequences can be modeled as an extension of the four possible Laplace-
resonant, triple-satellite-aided capture sequences. Because the Laplace resonance precesses by about 6 degrees every
Laplace resonance period, every flyby window is separated from the next window by about 60 Laplace resonance
periods (430 days). As indicated in Table 3, there are about 4 potential interplanetary trajectories in each window.
Multiplying four interplanetary trajectories per window by four types of Laplace-resonant, triple-satellite-aided capture
sequences and dividing by 430 days gives one triple-satellite-aided capture sequence per 27 days.

The position of Callisto must be aligned very closely with a trajectory of a Laplace-resonant, triple-satellite-aided
capture sequence in order for a quadruple-satellite-aided capture sequence to occur. As a rough estimate, a spacecraft
on a Laplace-resonant, triple-satellite-aided capture sequence would have to pass within 30,000 km of Callisto in order
for a quadruple-satellite-aided capture trajectory to be possible. Since this distant flyby could occur either before or
after the triple-satellite-aided capture sequence and the spacecraft could pass in front of Callisto or behind Callisto, the
position of Callisto would have to be within a 120,000 km range for a quadruple-satellite-aided capture trajectory to be
possible. Since the semi-major axis of Callisto’s orbit is 1,882,700 km, its orbital circumference is 2π(1, 882, 700km).
Since Callisto’s orbit is not commensurate with the Laplace resonant, the probability that Callisto will align with any
given Laplace-resonant, triple-satellite-aided capture sequence is 120,000 km divided by 2π(1, 882, 700km), which is
about one percent. Dividing 27 days (the period between triple-satellite-aided captures) by one percent gives the period
between one quadruple-satellite-aided captures, i.e. 2,700 days or 7.4 years. The above calculations are summarized
in Eq. 3.

Quad Frequency =
4 Interp. Trajs.

Seq.
× 4 Types of Triple-Seqs.

430days
× 120000km

2π(1882700km)
=

1 Quad-Seq.
7.4years

(3)

VI. Discussion

Interplanetary trajectories for double-satellite-aided capture sequences occur much more frequently (nearly al-
ways) than interplanetary trajectories for triple-satellite-aided capture sequences (a few times per year). Additionally,
triple-satellite-aided capture sequences require a deep-space maneuver (DSM) in order to precisely backward-target
an Earth flyby while double-satellite-aided capture sequences can backward-target a ballistic interplanetary trajectory
from Earth. Double-satellite-aided capture sequences also have an advantage in that both satellite flybys can always
occur in the same plane. Since the third flyby of a triple-satellite-aided capture sequence is rarely in the same plane as
the first two flybys, a plane-change maneuver is required. Either some of the effective ∆V of the second flyby must
be expended to change the plane, or an out-of-plane component must be added to the JOI manuever. Applying either
available “maneuver” will increase the total JOI ∆V required to capture the spacecraft into orbit about Jupiter.

Due to the above considerations, the example Ganymede-Io-JOI double capture sequence has a total ∆V of 347
m/s (as indicated in Table 2), while the example Ganymede-Io-JOI-Europa triple capture sequence has a total ∆V
of 367 m/s (in Table 3) due to its DSM and its non-equatorial Io flyby. Furthermore, triple-satellite-aided capture
sequences are more dynamically sensitive than double-satellite-aided capture sequences,15 so triple-satellite-aided
capture would also require greater navigational capabilities to implement. Even taking all of the above advantages
of double-satellite-aided capture into account, triple-satellite-aided capture sequences can still require less ∆V than
double-satellite-aided capture sequences under ideal conditions (i.e. if the three flybys occur in nearly the same plane
or the back-propagated Earth B-plane parameters are close to Earth without adding a DSM). Under such conditions, the
∆V required for triple-satellite-aided capture would be considerably less than that required for double-satellite-aided
capture and would be similar to the patched-conic ∆V estimates (of Table 1).

Quadruple-satellite-aided captures that align with interplanetary trajectories have not been integrated, but they are
predicted to occur once every 7.4 years. If a quadruple-satellite-aided capture sequence that aligned with an interplan-
etary trajectory was discovered, it would likely have drawbacks that are similar to those of triple-satellite-aided capture
sequences. In order to construct four flybys, a trajectory would require two orbital plane changes. Additionally, C3

is often needed as a target variable in order to converge on quadruple-satellite-aided capture sequences, so the DSM
required to backward-target the Earth flyby for quadruple-satellite-aided capture sequences would probably counter
any potential ∆V -savings. It is possible that a quadruple-satellite-aided capture sequence exists with all four flybys in
nearly the same plane and a backward-propagated Earth flyby with only a small DSM. Such a sequence would require
a similar amount of ∆V to the patched-conic estimates (of Table 1), but these ideal trajectories would occur very
infrequently since quadruple-satellite-aided capture sequences are predicted to occur only once every 7.4 years and it
is even less likely that the planes of the flybys would align during one of these sequences.
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VII. Conclusions and Future Work

We developed methods for finding interplanetary trajectories for multiple-satellite-aided capture sequences assum-
ing that the navigational challenges can be met. Double-satellite-aided capture trajectories occur the most often and
have ∆V costs that are low and similar to patched-conic estimates. Triple- and quadruple-satellite-aided capture se-
quences occur much less often and frequently require more ∆V than double-satellite-aided capture sequences due
to deep-space and plane-change maneuvers. For most Jupiter missions, double-satellite-aided capture would be the
best choice, but sometimes triple-satellite-aided capture may offer a lower ∆V cost. The Jupiter arrival window of
any future Jupiter orbiter mission should be checked for the availability and optimality of all three types of multiple-
satellite-aided capture sequences before a final mission-design decision is made.

Now that the basic mission-design methods have been developed to find interplanetary trajectories for multiple-
satellite-aided capture sequences, there are several extensions of this work that should be explored. The backward-
targeting method was applied to Earth, but the same method could be used to backward-target Venus or Mars flybys.
Regardless of which body is backward-targeted first, a longer planetary tour involving several flybys of planets in the
inner Solar System can be developed using trajectory optimization software. Finding such a tour would give a better
estimate of the total launch energy and ∆V required to execute a complete mission using multiple-satellite-aided
capture.

Because we predict that quadruple-satellite-aided capture sequences occur only once every seven years, another
potential application of these techniques would be to find every quadruple-satellite-aided capture trajectory over a
Jupiter arrival window of several decades. If one of those trajectories has similar ∆V requirements to the patched-
conic estimates, it would likely be the globally ∆V -optimal Jupiter capture sequence within that timeframe. Also,
systematically searching through triple-satellite-aided capture trajectories involving either Callisto, Ganymede, and
Io or Ganymede, Europa, and Io could also give some of the lowest available capture ∆V ’s. Once the lowest ∆V
trajectories are found for a given timeframe, missions could be planned around when these trajectories are available.
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