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BROAD-SEARCH ALGORITHMS FOR THE SPACECRAFT
TRAJECTORY DESIGN OF CALLISTO-GANYMEDE-IO TRIPLE

FLYBY SEQUENCES FROM 2024-2040, PART I: HEURISTIC
PRUNING OF THE SEARCH SPACE

Alfred E. Lynam∗

Triple flybys of the Galilean moons of Jupiter can capture a spacecraft into
orbit about Jupiter or quickly adjust the Jupiter-centered orbit of an already cap-
tured spacecraft. Because Callisto does not participate in the Laplace resonance
among Ganymede, Europa, and Io, triple flyby sequences involving gravity-assists
of Callisto, Ganymede, and Io occur only aperiodically for limited time windows.
An exhaustive search of triple-flyby trajectories over a 16-year period from 2024-
2040 using “blind” searching would require 8,415,358 Lambert function calls to
find only 127,289 possible triple flyby trajectories. Because most of these Lambert
function calls would not converge to feasible solutions, it is much more efficient to
prune the solution space using a heuristic algorithm and then direct a much smaller
number of Lambert function calls to find feasible triple flyby solutions. The novel
“Phase Angle Pruning Heuristic” is derived and used to reduce the search space
by 99%.

INTRODUCTION

Gravity-assist flybys of planets and moons expedite the design of interplanetary space missions
because they can dramatically reduce the amount of ∆V (and propellant mass) required to accom-
plish a spacecraft’s mission. The Galileo[1, 2] and Cassini-Huygens[3, 4] missions each performed
several planetary flybys of Earth and Venus before they left the inner solar system to travel to Jupiter
and Saturn (via a gravity assist of Jupiter), respectively. These gravity-assist flybys increased the
heliocentric orbital energy of the Galileo and Cassini-Huygens spacecraft such that they could reach
their outer solar system destinations with a feasible amount of propellant. After arriving at Jupiter,
the Galileo mission was able to perform 32 gravity-assist flybys of Jupiter’s Galilean moons before
it impacted Jupiter[5]. Cassini has already performed more than 100 gravity-assist flybys of Saturn’s
moons, and will continue to tour the Saturn system until 2017[6, 7]. For both Galileo and Cassini,
each of these flybys had a dual purpose of modifying the Planet-centered orbit of the spacecraft and
performing scientific analysis of the planetary moons (although Cassini’s flybys of Saturn’s smaller
moons had only a negligible effect on its trajectory).

Between their heliocentric planetary tours and planet-centered satellite tours, the Galileo and
Cassini-Huygens spacecraft had to perform propulsive maneuvers to capture into planet-centered
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orbits. While the Cassini-Huygens spacecraft simply performed a large maneuver at its clos-
est approch to Saturn [4], the Galileo spacecraft performed a gravity-assist flyby of Io before it
propulsively captured into orbit about Jupiter. This Io gravity assist reduced the propulsive ∆V
required to capture Galileo into orbit about Jupiter by 175 m/s.[8] Combining gravity-assist(s) of
a planetary satellite with a propulsive maneuver to capture a spacecraft into a planetary orbit is
called “satellite-aided capture”. Using a single satellite gravity-assist (as in the Galileo case) is
called “single-satellite-aided capture”, while using gravity assists of two or three satellites is called
double- or triple- satellite-aided capture, respectively. In addition to the Galileo mission designers,
several other investigators [9]–[15] have made substantial contributions to the solution of the single-
satellite-aided capture problem. Nock and Uphoff,[12] Johannesen and D’Amario,[16] Landau et
al.[17], and Strange et al.[18] have performed some initial mission design of double-satellite-aided
capture sequences at Jupiter. (Jupiter is the only planet that has multiple moons, the four Galilean
moons, that have enough gravity to permit meaningful gravity-assist flybys.) Lynam et al.[19] and
Lynam and Longuski[20] investigated the mission design of both double- and triple-satellite-aided
capture trajectories. They showed that using double- or triple-satellite-aided capture could reduce
the ∆V required to capture into Jupiter orbit even further: by 230 m/s or 350 m/s, respectively,
compared to single-satellite-aided capture.

Lynam and Longuski[21] performed a preliminary navigational analysis of double- and triple-
satellite-aided capture, determining that double flybys could be successfully navigated using ground-
based radiometric navigation, but triple flybys would require precise and rapid navigation techniques
(perhaps even autonomous navigation) to safely execute. In addition to satellite-aided capture, triple
flybys can be implemented within Jupiter satellite tours to increase the number of science flybys[22]
or modify the orbital elements of a Jupiter-centered orbit. While most of the previous work on triple
flybys focuses on point-design solutions, this paper and Part II[23] focus on performing a broad
search for a particular type of triple flyby (Callisto-Ganymede-Io triple flyby sequences) over a 16-
year range of dates between 2024 and 2040. This paper details a heuristic pruning algorithm that can
eliminate impossible trajectories and reduce the search space by 99%, while the companion paper
describes the broad-search Lambert algorithm that is used to find triple flyby trajectories within the
reduced solution space. Part II also describes a promising triple-satellite-aided capture trajectory
that would arrive at Jupiter in December 2029.

METHODOLOGY

Circular, Coplanar, Ephemeris-Free, Patched-Conic Model

The first step in developing the pruning heuristic is to analyze the Callisto-Ganymede-Io triple
flyby problem using the simplest possible trajectory model. In this initial model, the orbits of the
Galilean moons are modeled to be circular and coplanar with orbital radii equal to their semi-major
axes. The spacecraft’s orbit is modeled as four separate elliptical or hyperbolic two-dimensional
conic sections in the same plane as the Galilean moons. The four conic sections are: the spacecraft’s
initial orbit from its apojove or its incoming asymptote (depending on whether the orbit is initially
elliptical or hyperbolic) to the orbital radius of Callisto, the spacecraft’s orbit from Callisto’s to
Ganymede’s orbital radius, the spacecraft’s orbit from Ganymede’s to Io’s orbital radius, and the
spacecraft’s orbit from Io’s orbital radius to its next apojove or outgoing asymptote (depending on
whether the final orbit is elliptical or hyperbolic). The four conic sections are patched together by
modeling hyperbolic gravity-assist flybys of Callisto, Ganymede, and Io at their respective orbital
radii. This patched-conic method is also termed “ephemeris free” because the orbital positions
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of Callisto, Ganymede, and Io are modeled to always be coincident with the spacecraft’s position
as it flys across each moon’s orbit; the positions of the moons with regard to absolute time (their
ephemerides) are ignored. This approach is similar to that used by Lynam et al.[19] and Lynam and
Longuski[22] to find Laplace-resonant triple flybys.

The inputs for the simplified patched-conic model are the initial semimajor axis (a) and eccen-
tricity (e) of the incoming spacecraft. The spacecraft is propagated to its Callisto flyby via the conic
equation, the vis-viva equation, and the definition of flight path angle:[24]

cos ν =
a(1− e2)− r

e r
(1)

V =

√
2µJup

r
− µ

a
(2)

cos γ =

√
a2(1− e2)
r(2a− r)

(3)

where µJup is the gravitational parameter of Jupiter, r is the radius of Callisto’s orbit, ν is the
spacecraft’s true anomaly before the flyby, V is the spacecraft’s speed before the flyby, and γ is the
spacecraft’s flight path angle before the flyby. The two-dimensional flyby solution is computed by
finding the v-infinity, the pump angles, and the hyperbolic turning angle:[25]

V∞ =
√
V 2 + V 2

Ca − 2V VCa cos γ (4)

cosαin =
V 2 − V 2

Ca − V 2
∞

2V∞VCa
(5)

sin (δ/2) =
µCa

µCa + (RCa + hp,Ca)V∞
(6)

αout = αin ± δ (7)

where V∞ is the hyperbolic excess velocity of the spacecraft with respect to Callisto, VCa is Cal-
listo’s orbital speed, αin and αout are the incoming and outgoing pump angles of the flyby, δ is the
hyperbolic turning angle of the flyby, µCa is the gravitational parameter of Callisto, RCa is the phys-
ical radius of Callisto, and hp,Ca is the flyby altitude of the spacecraft. The ± in Eq. 7 indicates that
the flyby could either be an energy-reducing flyby or an energy-increasing flyby.

After the Callisto flyby is modeled, the orbital parameters of the spacecraft’s transfer from Cal-
listo to Ganymede can be calculated, the Ganymede flyby can be modeled, the orbital parameters
of the transfer from Ganymede to Io can be calculated, and the Io flyby can be modeled. These
calculations use similar equations to Eqs. 1–7, so they will not be discussed in detail. However, the
semi-latus recta (p) and times of flight (T ) of the Callisto-Ganymede and Ganymede-Io transfers
must also be calculated because they are used as initial guesses in the Lambert algorithm used in
Part II[23].
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p = a(1− e2) (8)

T =
√
a3/µJup [E2 − e sinE2 − (E1 − e sinE1)] (9)

T =
√
−a3/µJup [e sinhH2 −H2 − (e sinhH1 −H1)] (10)

where E1, E2, H1 and H2 are the elliptical and hyperbolic anomalies of the spacecraft at the be-
ginning and end of its transfer between moons (depending on whether the transfer is elliptic or
hyperbolic).

The final outputs of this circular, coplanar, patched-conic model are the phase angles (angular
separations) between Ganymede and the other two moons at the time of the Ganymede flyby. These
phase angles are of fundamental importance to the pruning heuristic developed in this paper because
they are used to screen the relatively few feasible triple-flyby sequences from the entire solution
space (of mostly infeasible sequences).

∆λCa,Ga = (ν1 − ν2) + nCaTCa,Ga (11)

∆λGa,Io = (ν3 − ν4) + nIoTGa,Io (12)

where ∆λCa,Ga is the angle from Ganymede’s position to Callisto’s position at the time of the
Ganymede flyby, ∆λGa,Io is the angle from Io’s position at the time of the Ganymede flyby to
Ganymede’s position, TCa,Ga is the spacecraft’s transfer time between Callisto and Ganymede, and
TGa,Io is the spacecraft’s transfer time between Ganymede and Io. Additionally, ν1 is the true
anomaly of the spacecraft immediately after the Callisto flyby, ν2 is the true anomaly of the space-
craft before the Ganymede flyby, ν3 is the true anomaly of the spacecraft after the Ganymede flyby,
ν4 is the true anomaly of the spacecraft before the Io flyby. (ν2 and ν3 are slightly different because
the Ganymede flyby alters the true anomaly of Jupiter-centered orbit of the spacecraft.) Figure 1
depicts the phase angles ∆λCa,Ga and ∆λGa,Io in the context of a triple flyby.

Interpolation Models for Data Pruning

The circular, coplanar, ephemeris-free, patched-conic model was implemented in MATLAB, and
its inputs and outputs are summarized in Table 1. The range of input values for the initial orbital
elements (a and e) was chosen such that it included both Jupiter-centered, elliptical orbits and
Jupiter-centered, incoming hyperbolic asymptotes with V∞ of less than 6 km/s. The flyby altitudes
are modeled as always being 100 km for Callisto, 1,500 km for Ganymede, and 300 km for Io.
The Callisto flyby is lower than the others because it is least likely to have navigational errors.[21]
The Ganymede flyby is much higher than the others because of limitations in the circular, coplanar
model. In the full three-dimensional model, much of equivalent ∆V of the Ganymede flyby is
often needed to change the inclination of the spacecraft’s orbit so it can reach Io for a flyby. This
inclination-change requirement results in a loss of equivalent ∆V for orbital energy change, which
is modeled in two-dimensions by an artificial increase in the flyby altitude at Ganymede.

In addition to the orbital parameter inputs in Table 1, a number of qualitative inputs are used
to distiguish between four distinct sets of Callisto-Ganymede-Io triple flyby solutions. The flyby
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Ga,Io  

Position of Io at time of 

Ganymede flyby. 

Ca,Ga  

Position of Callisto 

at time of 

Ganymede flyby. 

Position of Callisto at 

time of Callisto flyby. 

Position of Io at 

time of Io flyby. 

Figure 1. A geometric definition of the Callisto-Ganymede and Ganymede-Io phase
angles for a Callisto-Ganymede-Io triple flyby.
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Table 1. Circular, Coplanar, Ephemeris-free, Patched-conic Model: Inputs
and Outputs

Inputs Range of Input Values Outputs

Initial Semimajor Axis (a), kma −1.7× 106 to 1.2× 106 pCa,Ga
Initial Eccentricity (e) 0.6 to 1.3 pGa,Io
Callisto Flyby Type Energy-reducing TCa,Ga
Callisto Flyby hp, km 100 TGa,Io
Ganymede Flyby Type Energy-increasing OR ∆λCa,Ga

Energy-reducing
Ganymede Flyby hp, km 1500 ∆λGa,Io
Io Flyby Type Energy-reducing —
Io Flyby hp, km 300 —
Io Flyby Positionb Before Perijove OR —

After Perijove

a Since parabolas have an infinite semimajor axis, the semimajor axis
range goes from −1.7 × 106 down to −∞ and from +∞ down to
1.2× 106 rather than directly from −1.7× 106 to 1.2× 106 through
0.

b The Callisto and Ganymede flybys always occur before the space-
craft’s perijove in this model.
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Figure 2. The Callisto-Ganymede and Ganymede-Io phase angles (in degrees) for
each set of patched-conic propagations.

of Ganymede could potentially be either energy-increasing or energy-reducing, and the flyby of
Io could occur either before the spacecraft’s perijove or after the spacecraft’s perijove. (While the
flybys of Callisto and Io could technically be either energy-increasing or energy-reducing, this paper
focuses on the cases where they are always energy-reducing.)

For each of the four cases, the initial orbital elements are varied within a MATLAB array to
create 1,780 two-dimensional, patched-conic trajectories. In the context of the reduction heuristic,
the outputs are the semi-latus recta and times of flight of the Callisto-Ganymede and Ganymede-Io
transfers (see Eqs. 8–10), and the Callisto-Ganymede and Ganymede-Io phase angles (see Eqs. 11
and 12). The phase angle outputs from the four sets of 1,780 patched-conic propagations are plotted
in Fig. 2.

In Fig. 2, each of the four sets of 1780 patched-conic propagations roughly forms a quadrilateral in
phase-angle space. Since the four sides are not linear, polynomial interpolation is used to form four
curves that approximately bound each set of propagations. Figure 3 shows these polynomial curves
bounding each set of phase angle data. Boolean expressions are generated using these polynomial
curves in order to form the pruning heuristic. The Boolean expressions have the following general
form:
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Figure 3. Bounding polynomial curves (thick black lines) for each set of phase angle data.

PruningBoolean =
(
∆λGa,Io ≤ b0 + b1∆λCa,Ga + ...+ bn∆λnCa,Ga

)
&
(
∆λGa,Io ≥ c0 + c1∆λCa,Ga + ...+ cn∆λnCa,Ga

)
&
(
∆λCa,Ga ≤ f0 + f1∆λGa,Io + ...+ fn∆λnGa,Io

)
&
(
∆λCa,Ga ≥ g0 + g1∆λGa,Io + ...+ gn∆λnGa,Io

) (13)

where bi, ci, fi, and gi are coefficients for the Boolean polynomials, and & represents the boolean
AND operator. There are four different pruning booleans which each represent one of the four
sets of trajectories. If one of the four pruning booleans is TRUE for a given set of phase angles
(∆λCa,Ga and ∆λGa,Io), then the trajectory represented by those phase angles is feasible. If all
of the four pruning booleans are FALSE, then the trajectory represented by those phase angles
is known to be infeasible and discarded without further analysis. Since certain areas of the four
pruning booleans are overlapping (see Fig. 3), some sets of phase angles may have two solutions
depending on whether the spacecraft’s Ganymede flyby is energy-reducing or energy-increasing.
This multiplicity of solutions is handled implicitly during the Lambert solution process in Part
II[23].

In addition to the polynomial interpolation structures that bound the phase-angle results of the
propagations, interpolation structures are also created for the semi-latus rectum and time of flight
outputs for the Callisto-Ganymede and Ganymede-Io transfers. Nearest-neighbor, two-dimensional
interpolation structures are created from the trajectory propagations for each of the four outputs
(pCa,Ga, pGa,Io, TCa,Ga, and TGa,Io) with the two phase angles (∆λCa,Ga and ∆λGa,Io) as the dependent
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variables. Since the data is scattered, MATLAB’s “TriScatteredInterp” function is used to create
the two-dimensional interpolation structures. These structures are later used in Part II[23] to extract
initial guesses for pCa,Ga, pGa,Io, TCa,Ga, and TGa,Io.

Ephemeris Reading, Phase Angle Calculation, and Data Reduction

After the Boolean Expressions for the phase angles (∆λCa,Ga and ∆λGa,Io) and the interpolation
structures for pCa,Ga, pGa,Io, TCa,Ga, and TGa,Io are generated, ephemeris reading is used to find
the positions of the Galilean moons over time. The positions of Callisto, Ganymede, and Io are
extracted from the ephemeris file jup230l.bsp[26] in 1-minute increments over 8 2-year invervals
between 2024 and 2040. (The 16-year interval must be divided into 8 2-year invervals because of
contiguous array length limits in MATLAB; there are about 1.05 million minutes in a 2-year period.)
After the position vectors of the moons are extracted, the approximate orbit normal vector for the
three moons is calculated using consecutive positions of Ganymede. Although the three moons are
not in the exact same orbit plane, they are all within one degree of inclication of each other. Also,
this orbit normal is only used to provide a positive angular direction for the phase angle calculations,
so it is only important that this orbit normal be approximately correct.

n̂ =
~rGa,1 ×~rGa,2

‖~rGa,1 ×~rGa,2‖
(14)

where n̂ is the orbit normal for Ganymede’s orbit, ~rGa,1 is the first extracted ephemeris position
of Ganymede, and ~rGa,2 is an extracted ephemeris position of Ganymede 19 minutes after the first
position. After the orbit normal is calculated, the two phase angles are calculated at a particular
time with the following expressions involving the scalar triple product, the signum function, and the
geometric definition of a dot product:

∆λephem,Ca,Ga = Sgn (n̂ •~rGa ×~rCa) cos−1
(

~rGa •~rCa

‖~rGa‖ ‖~rCa‖

)
(15)

∆λephem,Ga,Io = Sgn (n̂ •~rIo ×~rGa) cos−1
(

~rIo •~rGa

‖~rIo‖ ‖~rGa‖

)
(16)

where ∆λephem,Ca,Ga and ∆λephem,Ga,Io are the Callisto-Ganymede and Ganymede-Io phase angles
calculated from the ephemerides at a particular time, ~rCa, ~rGa, and ~rIo are the position vectors of
the three moons at a particular time, the signum function and the triple scalar product ensure that
the signs of the phase angles are consistent with Eqs. 11 and 12, and the arccosines of the unit dot
products of the position vectors are used to calculate the magnitude of the phase angles.

Once the phase angles are calculated using Eqs. 15 and 16 for each of the 1.05 million minutes
for a 2-year period, all four sets of boolean expressions described by Eq. 13 are applied to each
pair of phase angles. If one or two of the four boolean expressions is true for a particular pair of
phase angles, the time associated with that pair of phase angles is recorded as a feasible Ganymede
flyby time, and one or two sets of pCa,Ga, pGa,Io, TCa,Ga, and TGa,Io initial guesses are extracted from
the interpolation structures for use in the Lambert solution in Part II[23]. If there are two boolean
expressions that are true for the same pair of phase angles, then the two solutions are implicitly
distiguished in the Lambert solver because they have different initial guesses for pCa,Ga, pGa,Io,
TCa,Ga, and TGa,Io.
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Table 2. Data Reduction of Time Vectors

Ganymede Flyby Io Flyby Vector Length % of Minutes

Combined Minutes in 16-years — 8.42× 106 100%
Energy-Reducing Before PJ 14,747 0.175%
Energy-Increasing Before PJ 11,052 0.131%
Energy-Reducing After PJ 45,512 0.541%
Energy-Increasing After PJ 55,978 0.665%
Total Reduced Times — 127,289 1.513%
Unique Reduced Times — 82,110 0.976%
Impossible Times Pruned — 8.33× 106 99.024%

RESULTS

As mentioned in the methodology section, the 16-year date range is split up into 2-year intervals
in order to reduce the MATLAB vector sizes to feasible levels. Each 2-year interval contains about
1.05 million minutes, position vectors from three moons are extracted, and each position vector
contains 3 elements, so the total number of double-precision, floating-point numbers extracted from
the ephemeris file is about 9.45 million per 2-year interval. Once these position vectors are extracted,
Eqs. 14–16 are used to calculate ∆λephem,Ca,Ga and ∆λephem,Ga,Io for each minute, resulting in 2.10
million phase angles per 2-year period. The ∆λephem,Ca,Ga and ∆λephem,Ga,Io phase angle data are
used to form four pruning booleans calculated from Eq. 13 for each of the four regions in Fig. 3.
These four reduction booleans are used to compress each 1.05 million entry time vector into four
much smaller time vectors by removing all of the times that would never correspond to a triple flyby.
The process is performed independently for all eight 2-year periods between 2024 and 2040. After
each 2-year period, the four reduced time vectors generated for that period are aggregated to those
of the previous periods. After all eight of the 2-year periods are processed, the four aggregated
time vectors represent the available times for each of the four triple flyby categories represented by
Fig. 3.

The combined number of minutes that are analyzed in the 16-year period are 8.41 million. The
lengths of the four aggregated time vectors are compared to the total combined number of minutes
in Table 2. As indicated by Fig. 3, the solution space for Io flybys before perijove in Table 2 is
much smaller than the solution space for Io flybys after perijove. As also indicated by Fig. 3, there
are large areas of overlap between the energy-reducing Ganymede flybys and the energy-increasing
Ganymede flybys: 55,179 of the 82,110 unique times have two triple flyby solutions with differing
Ganymede flybys. These instances of double solutions are dealt with implicitly by using separate
interpolation structures for the semilatus rectum, p, and time of flight, T, initial guesses for the
energy-reducing and energy-increasing solutions. The key result of Table 2 (and of this paper) is
that the data pruning heuristic was able to reduce the solution space by 99%, thereby eliminating a
substantial number of impossible solutions before the Lambert solution process is attempted.

The algorithm described in the methodology section was implemented in MATLAB on a desktop
PC with 2 Intel Xeon CPU E5-2687W @ 3.10 GHz processors. Vectorization was used heavily to
optimize the MATLAB code. Although parallelization, using compiled code instead of MATLAB,
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Table 3. Computational time of MATLAB Data Reduction code segments

Code Segment Comp. time (s) % of Comp. Time

Total Runtime 167.459 100%
CCEFPC model 0.132 0.079%
Interpolation structures 0.239 0.143%
Ephemeris reading 162.773 97.202%
Phase angle calculation 4.315 2.577%
and data reduction

or using faster ephemeris readers than SPICE could have been used to speed up the calculations, the
single-core vectorized MATLAB implementation was sufficient to solve the data reduction problem
in a reasonable amount of time. The primary computational bottleneck was using SPICE to read the
position vectors of Callisto, Ganymede, and Io from jup230l.bsp for 8.42 million minutes. Running
the circular, coplanar, ephemeris-free, patched conic (CCEFPC) model; creating the interpolation
structures; calculating the phase angles from the position vectors; and reducing the data using the
pruning heuristic required very little computational time as indicated by Table 3.

DISCUSSION

The primary advantage of the pruning heuristic as a global trajectory optimization method is
that it can detect a limited number of feasible solutions within an enormously large solution space.
The phase angle pruning heuristic is particularly effective for triple flybys in the Jupiter system for
several reasons. First, the orbits of the Galilean moons have low eccentricity and inclination, so the
circular, coplanar assumption is relatively accurate for the Jupiter system. Second, the three flybys
occur in rapid succession, so there is less time for error to accumulate in the patched-conic model.
Third, triple flybys are heavily geometrically constrained, and the pruning heuristic allows those
constraints to be expressed directly in equations.

In addition to the Callisto-Ganymede-Io triple flybys, there are also three other classes of triple
flybys involving Callisto, Ganymede, and Io: Callisto-Io-Ganymede triple flybys, Ganymede-Io-
Callisto triple flybys, and Io-Ganymede-Callisto triple flybys. Although this paper focuses on
Callisto-Ganymede-Io triple flybys, the reduction heuristic could be applied to any feasible com-
bination of three of Jupiter’s Galilean moons. Lynam et al.[19, 20] describes a similar phase angle
analysis for triple flybys of the three participants in the Laplace resonance: Ganymede, Europa, and
Io. However, other combinations of the Galilean moons such as Callisto-Ganymede-Europa and
Callisto-Europa-Io triple flybys have not yet been explored.

Another potential astrodynamics application of the pruning heuristic would be to find triple flybys
of Uranus’s moons. Uranus’s four most massive moons (Titania, Oberon, Umbriel, and Ariel) are
much less massive than the Galilean moons, so the gravity-assist capacity of a triple flyby would be
lessened. However, Uranus’s moons are also in roughly circular, co-planar orbits around Uranus,
so the methodology and mathematics of the pruning heuristic for triple flybys should apply to them
also. It is also possible that the pruning heuristic could be applied to triple flybys of Venus, Earth,
and Mars. Although it would be noticeably less accurate because of the inclinations of the orbits
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of Venus and Mars, the pruning heuristic could potentially be used to find Earth-Venus-Earth-Mars
gravity assist trajectories to the outer solar system.

CONCLUSIONS

Callisto-Ganymede-Io triple flybys can be used to capture a spacecraft into orbit about Jupiter or
quickly adjust the Jupiter-centered orbital elements of an already captured spacecraft. The phase
angle reduction heuristic developed in this paper was capable of reducing the solution space of
Callisto-Ganymede-Io triple flybys from 2024–2040 by removing 99% of the infeasible solutions.
The remaining 1% of the solutions are potentially feasible and can be calculated using a Lam-
bert solver. The interpolation structures for semi-latus rectum and transfer times for the Callisto-
Ganymede and Ganymede-Io transfers can be used to as initial guesses for the solution of Lambert’s
problem. Overall, the methods used in this paper dramatically expedite the search for triple flybys
of Callisto, Ganymede, and Io by eliminating infeasible solutions and providing initial guesses for
Lambert solutions.
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