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  GUIDANCE AND NAVIGATION OF A CALLISTO-IO-GANYMEDE 
TRIPLE FLYBY JOVIAN CAPTURE 

Alan M. Didion* and Alfred E. Lynam† 

Use of a triple-satellite-aided capture to enter Jovian orbit reduces insertion ΔV 

and provides close flyby science opportunities at three of Jupiter’s four large 

Galilean moons. This capture can be performed while maintaining appropriate 

Jupiter standoff distance and setting up a suitable apojove for plotting an ex-

tended tour. This paper focuses on the guidance and navigation of such trajecto-

ries in the presence of spacecraft state errors, ephemeris errors, and maneuver 

execution errors. A powered-flyby trajectory correction maneuver (TCM) is 

added to the nominal trajectory at Callisto and the nominal Jupiter orbit insertion 

(JOI) maneuver is modified to both complete the capture and target the Gany-

mede flyby. A third TCM is employed after the flybys to act as a JOI cleanup 

maneuver. A Monte Carlo simulation shows that the statistical ΔV required to 

correct the trajectory is quite manageable.   

INTRODUCTION 

Satellite-aided captures involve the use of gravity-assist flybys of a satellite or satellites to re-

duce the orbital energy of a spacecraft such that it becomes captured by the host planet. Some-

times, the spacecraft can be captured solely by the flyby(s), but often an insertion burn is needed 

to complete the capture. This capture strategy can be compared to typical orbital insertion which 

closes the incoming hyperbola with a single retrograde burn at periapsis. Satellite-aided capture 

maneuvers make use of a satellite’s large gravity to significantly reduce the magnitude of the in-

sertion burn or eliminate the need for one entirely.
1,2

 These maneuvers are applicable to any siza-

ble planetary moon system, but are of particular interest in the Jupiter system wherein the four 

Galilean moons provide large gravity-assist potential, are in a predictable resonance pattern, and 

are of relevant scientific interest.
3,4,5,6

 Double-, triple- and rare quadruple-satellite-aided capture 

opportunities have been predicted and examined by Lynam.
7,8

 A preliminary navigation analysis 

of double and triple-satellite-aided capture trajectories was performed by Lynam and Longuski.
9
 

They demonstrated that trajectory correction maneuvers are needed to successfully navigate tri-

ple-satellite-aided capture trajectories. Didion and Lynam examined and targeted a particular tri-

ple-satellite-aided capture trajectory that encountered Jupiter’s Galilean moons Callisto, Io and 

Ganymede, and included a retrograde insertion maneuver at perijove (before the Ganymede en-

counter).
10

 This trajectory was modeled without navigation errors and was purely ballistic, except 

for the main impulsive perijove maneuver. It was found that the Io and especially Ganymede fly-
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bys were sensitive to initial conditions, and the question of navigational feasibility arose. Similar 

work by Patrick and Lynam examined a similar maneuver, but with a different Galilean moon 

encounter sequence, and more importantly, made use of low-thrust solar electric propulsion 

(SEP).
11

 

This paper further investigates the Callisto-Io-JOI-Ganymede sequence formulated by Didion 

and Lynam. Through building a new, original, more flexible model written in MATLAB, the nav-

igational limitations of the NASA General Mission Analysis Tool (GMAT) are eliminated and 

computation times are decreased. Moreover, access to tailored data, such as the state transition 

matrix (STM), is facilitated. Spacecraft position and velocity errors are modeled pseudo-

randomly along with similar ephemeris knowledge errors pertaining to each Galilean moon. The 

insertion maneuver is given an error model according to Wagner and Goodson, which is also ap-

plied to new trajectory correction maneuvers.
12

 The TCMs are used to correct the propagated 

pseudo-random errors, and each piece of data is carefully collected. An outer Monte Carlo repeti-

tion loop ensures that each of thousands of mission simulations are sufficiently randomized and 

cataloged. This data is then collated and/or averaged for detailed analysis. 

METHODOLOGY 

The previous GMAT model had much utility in ease of use and detailed graphics, which made 

it very suitable for prototyping the triple-satellite-aided capture trajectory. However, the built-in 

features suffered from long computational times and the difficulty in stopping the integrator to 

extract data, partially due to the complexity of this trajectory. It was decided that a MATLAB 

model, built in-house and starting from nothing, would be more adaptable and accessible. With 

this new model, pseudo-random errors could be injected at specific times and the state transition 

error matrix (STM) could be carried and used to target TCMs and correct the trajectory. 

System Modeling in MATLAB 

A model was built in MATLAB which made use of ode113 differential equation solver to in-

tegrate the seven-body dynamical system through time. In Jupiter-centered coordinates, the four 

Galilean moons and the sun propagated according to ephemeris checks for each time step. The 

four moons, the sun, and Jupiter form the gravitational model, with a negligible-mass spacecraft 

as the seventh body. The spacecraft began at the initial state as previously determined by Didion 

and Lynam in the GMAT model, as detailed below in Jupiter-centered coordinates. 

Table 1: Spacecraft Initial State, Jupiter-Centered Ecliptic J2000
10

 

x y z

-4568345.274 1030.943 -60834.882

u v w

9.248 -1.868 0.064

Position [km]

Velocity [km/s]

 

The model is propagated using the 3-body equations of motion as described by Vallado, which 

are adjusted for seven bodies.
13

 This is done simply by adding more terms for each gravitational 

source and causes negligible additional complexity because it assumes the spacecraft has no grav-

ity of its own and the celestial bodies are “on rails”, or do no experience dynamical forces; they 

only move according to the ephemeris predictions. 
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Where “SC” denotes a quantity pertaining to the spacecraft, “J” for Jupiter, and “i” for each 

third body; e.g.: terms such as “SC-i” denote quantities pertaining to a third body in relation to 

the spacecraft. This equation describes how the spacecraft accelerates in response to the gravity 

of Jupiter and each of the “third bodies”. In this case, the term for a third body was repeated a 

total of five times using the parameters for the sun and each of the four Galilean moons respec-

tively. This served as the differential equation for the ode113 integrator, solving for the trajectory 

of the spacecraft with time as it traveled through the system. 

Each integration step propagated the state of the spacecraft (six elements) as well as a STM 

which incorporated the errors for each body, allowing for easy propagation of inserted errors as 

described in the next section. Because the ode113 function inputs and outputs a row vector, the 

STM had to be repeatedly flattened and reshaped in order to extract the necessary information. In 

row form, the vector handled by ode113 was a 1x330 row, which was reduced to 1x324 after sep-

arating the STM from the first six entries that represent the spacecraft state. This could then be 

easily reshaped into the 18x18 STM, as it was used in the following section to handle error prop-

agation. 

The trajectory was split into mission “phases”: branches between specific points of interest at 

which the integration pauses. In the scheme used here, the pauses represented an instant in which 

took place several simultaneous, instantaneous processes. Pauses were enforced by an “events” 

function inserted into the ode113 options, and took place at critical points such as periapsides, as 

follows: initial state, Callisto periapsis, Io periapsis, Jupiter periapsis, Ganymede periapsis, arbi-

trary point outside Ganymede’s influence, Jupiter apoapsis. At each pause, the spacecraft gained 

instantaneous knowledge of its state and the bodies around it, which it used to target TCMs and 

correct the next phase of the trajectory. Once targeted, the TCMs are instantaneously executed 

before the end of the pause. All of these pieces of knowledge, as well as the TCM execution it-

self, were subject to error, as is explained in the following sections.  

Insertion of State Errors 

At each pause, appropriate state errors were determined for the situation before integration re-

sumed; these represent errors in the spacecraft position and velocity as well as ephemeris errors 

for the position of each Galilean moon. The errors were implemented using a call of “randn” for 

each value each time, multiplying the randn result by a “reasonable” standard deviation value for 

each error, as detailed below in Table 2. We assume that radiometric navigation could provide 

sufficient trajectory knowledge to reduce the initial state uncertainty to that level. The errors on 

the moons positions represent the uncertainty of our present ephemeris knowledge of the Galilean 

moons. 

Table 2: Standard Deviations for State Errors 

SC δx δy δz δu δv δw

Initial State 1.0 1.0 1.0 1.0 1.0 1.0

Other 0.1 0.1 0.1 1.0 1.0 1.0

Moons

Departure 0.1 0.1 0.1

Arrival 5.0 10.0 5.0

Position [km] Velocity [mm/s]

 

For each pause, there were six errors applied to the spacecraft state, and three position errors 

applied to each applicable moon. The spacecraft state error was assumed to be large at the initial 

state and an order of magnitude smaller at all other pauses. The values in the lower half of Table 

2 detail the smaller errors at the moon currently being departed and larger errors for the next to be 

encountered, e.g.: at the pause at Callisto periapsis, there is a small error on Callisto’s position 

and a large error on Io’s position. Likewise, the pause at Ganymede periapsis experienced small 
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error in Ganymede’s position, but no “arrival” error, because the next pause point is in open Jovi-

an space. Once a vector of “reasonable” errors was determined, it was multiplied by the propagat-

ed state error transition matrix from the previous integration and the spacecraft state was updated 

to reflect the error. This new state was the state plotted and used for the next integration. 

B-plane Targeting & TCMs 

At Callisto periapsis, a TCM was used to ensure the next arrival at Io was in the required area 

of the Io B-plane in order to achieve the desired flyby. Likewise, the composite JOI maneuver 

was targeted to properly intercept Ganymede’s B-plane. To achieve this, the Callisto periapsis 

pause and the JOI pause featured B-plane targeting loops which would apply a “guess” TCM, 

propagate until arrival, calculate the B-plane, and repeat with a new TCM depending on an objec-

tive function until agreement with desired values was reached. The objective function logic is 

explained below, given the B-plane dot products and derivatives from geometry, where Φ is the 

STM as previously described and X is the spacecraft state. 

 
𝐹 = [

𝐵 ∙ 𝑅𝑎𝑐𝑡 − 𝐵 ∙ 𝑅𝑛𝑜𝑚

𝐵 ∙ 𝑇𝑎𝑐𝑡 − 𝐵 ∙ 𝑇𝑛𝑜𝑚
] 

(2) 

 𝑑𝑋
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𝑑𝑋

𝑑𝑣
=  𝜑(1: 6,5), 

𝑑𝑋

𝑑𝑤
=  𝜑(1: 6,6) (3) 
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 𝑇𝐶𝑀1 =  𝑇𝐶𝑀0 − 𝐷𝐹′/(𝐷𝐹′ ∗ 𝐷𝐹) ∗ 𝐹 (5) 

 

In Equation 2, an objective function F was set up, representing the difference between the de-

sired, nominal (nom) B-plane dot products and the actual values achieved. This objective function 

ultimately determined when the target was reached and the targeting loop could end. Equation 3 

represented state derivatives as extracted from the STM, which were needed to take the derivative 

of F, as calculated in Equation 4. Finally in Equation 5, the TCM was updated with a new 

“guess”, according to a function of the derivative of the objective function with the change in 

TCM components. This logic then repeated, integrating from the same state with the new TCM, 

calculating the B-plane parameters each time until both values of the F matrix were lower than an 

applied tolerance; in this case, the tolerance used was one meter. This entire process served to 

both target the necessary ideal TCMs and to correct position and velocity error as inserted previ-

ously. However, these maneuvers were still subject to error themselves, as described in the next 

section. 

Maneuver Execution Error 

Maneuver execution error was applied onto each TCM as well as the JOI maneuver and was 

based on the maneuver error model analyzed by Wagner and Goodson.
12

 This model provides 

proportional and fixed error magnitudes describing Cassini’s main engine assembly (MEA) and 

reaction control system (RCS) propulsion methods. The error for TCMs 1 and 2 were modeled 

using the RCS values, while the JOI composite maneuver was modeled using the MEA values as 

shown in Table 3. These values represent the standard deviation values and errors are applied by 

multiplying a “randn” call by the model equation and adding them vectorially onto the ideal ma-

neuvers. The equations are also given below, with σ1 being the fixed values, σ2 being the propor-

tional values, and y being the magnitude of the nominal maneuver. 
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Table 3: Maneuver Execution Error Model
12 

MEA RCS

Magnitude Proportional [%] 0.02 1.2

Fixed [mm/s] 5.0 0.8

Pointing Proportional [mrad] 0.6 5.5

(per axis) Fixed[mm/s] 3.0 0.0  

 𝑑∆𝑉 = 𝑟𝑎𝑛𝑑𝑛 ∗ √𝜎1
2 + 𝑦2𝜎2

2 (6) 

This leads to the following set of equations, with “mag”, “point1”, and “point2” forming an 

orthogonal set representing the magnitude error, in the direction of the nominal maneuver, and 

two pointing errors, oriented at right angles to the maneuver direction, ∆�̂�. These equations are 

used similarly when calculating the TCM errors with the RCS values, wherein the “yJOI” would 

be replaced by “yTCM”, the magnitude of the nominal TCM. 

 
𝑑∆𝑉𝑚𝑎𝑔𝑀𝐸𝐴

=  𝑟𝑎𝑛𝑑𝑛 ∗ √𝜎1𝑚𝑎𝑔𝑀𝐸𝐴

2 + 𝑦𝐽𝑂𝐼
2𝜎2𝑚𝑎𝑔𝑀𝐸𝐴

2 ∗ ∆�̂� 
(7) 

 
𝑑∆𝑉𝑝𝑜𝑖𝑛𝑡1𝑀𝐸𝐴

= 𝑟𝑎𝑛𝑑𝑛 ∗ √𝜎1𝑝𝑜𝑖𝑛𝑡𝑀𝐸𝐴

2 + 𝑦𝐽𝑂𝐼
2𝜎2𝑝𝑜𝑖𝑛𝑡𝑀𝐸𝐴

2 ∗ ∆�̂�𝑝1 
(8) 

 
𝑑∆𝑉𝑝𝑜𝑖𝑛𝑡2𝑀𝐸𝐴

= 𝑟𝑎𝑛𝑑𝑛 ∗ √𝜎1𝑝𝑜𝑖𝑛𝑡𝑀𝐸𝐴

2 + 𝑦𝐽𝑂𝐼
2𝜎2𝑝𝑜𝑖𝑛𝑡𝑀𝐸𝐴

2 ∗ ∆�̂�𝑝2 
(9) 

 𝑑∆𝑉𝑀𝐸𝐴 =  𝑑∆𝑉𝑚𝑎𝑔𝑀𝐸𝐴
+ 𝑑∆𝑉𝑝𝑜𝑖𝑛𝑡1𝑀𝐸𝐴

+ 𝑑∆𝑉𝑝𝑜𝑖𝑛𝑡2𝑀𝐸𝐴
 (10) 

In these equations, the unit vectors can be described by the below relations, where �̂� is the ver-

tical direction unit vector. 

 ∆�̂� =  
∆𝑉

‖∆𝑉‖
,   ∆�̂�𝑝1 =  ∆�̂� × �̂�,   ∆�̂�𝑝2 =  ∆�̂� × ∆�̂�𝑝1 (11) 

The result of Equation 10 was then added onto the nominal maneuver and propagation contin-

ued. This occurred using the appropriate values from Table 3 Error! Reference source not 

found.for each of the two TCMs and for the adjusted JOI composite maneuver. 

Statistical Modeling via Monte Carlo Simulation 

In order to determine the stochastic robustness of this mission profile and ultimately determine 

its average sensitivity to reasonable perturbations, a Monte Carlo simulation scheme was devel-

oped to repeat the MATLAB script several thousand times, each with new pseudo-random per-

turbations. This scheme was implemented by creating a simple frame script which randomizes the 

“randstream” seed variable based on the current clock time and the mt19937ar algorithm, ensur-

ing that each repeated run receives legitimately different pseudo-random values for continued 

calls of “randn”. Without this measure, it would be unclear whether the randstream was being 

reused for continued runs. The repetition script set up a while loop which ran until a set time of 

day (usually overnight), repeatedly running the simulation function and appending a vector of 

mission data onto a large array. This large array was then saved into an excel sheet for statistical 

post-processing. 

RESULTS 

This section discusses the outcome of performing the triple-satellite-aided capture sequence in 

the complete Jovian system model in MATLAB. First, data is presented to verify that without 

perturbations, a nominal trajectory through this sequence matched, within reasonable tolerance, 
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the GMAT trajectory of the same initial conditions and given maneuvers. Second, the results of 

the Monte Carlo repetition of the script, with pseudo-random perturbations injected at the appro-

priate points, are presented and discussed. Data on the statistical distributions of physical trajecto-

ry parameters are presented, with graphical representations of each of the individual moons’ flyby 

B-planes. 

Verification of the MATLAB Model & Nominal Characteristics 

The new MATLAB model was verified for accuracy against the previously used GMAT mod-

el before proceeding. This was done by giving the MATLAB model the full set of initial space-

craft conditions, the set JOI magnitude, and the ephemeris epoch used in the GMAT model. The 

spacecraft was then allowed to freely propagate through the nominal trajectory without any per-

turbations, targeting, or trajectory correction. At the end, the position of the spacecraft during fly-

bys is compared to the GMAT model. The radial error at Callisto was 0.10%, which when left to 

ballistically propagate without errors or correction led to a 2.67% radial error at Ganymede clos-

est approach. The final period was 295.271 days, within 5 days of the 300 day target. This error 

was deemed acceptable, and analysis continued with the new MATLAB model. Below, in Table 

4, are the “expected” nominal trajectory parameters for the mission (from GMAT), against which 

will later be compared the average values of the Monte Carlo simulation.  

Table 4: Expected Nominal Parameters from GMAT Model 

Callisto Alt. 505.0 [km]

Io Alt. 282.0 [km]

Ganymede Alt. 98.5 [km]

Perijove Radius 3.3 [RJ]

JOI 253.0 [m/s]

Final Period 300.0 [day]  

Monte Carlo Statistical Characteristics 

Using the Monte Carlo repetition frame script previously described, a total of approximately 

2500 mission runs were completed and all relevant values were catalogued. Brief post-processing 

of the data in Excel confirmed that of the 2500 runs, not a single case resulted in failure, i.e., no 

run failed to converge, and no trajectory intersected the surface of a moon, used excessive ΔV, or 

failed to achieve the desired 300 day final orbital period. Furthermore, the data collected was ana-

lyzed to extract the statistical properties of each individual quantity of interest, including the min-

imum, maximum, range, and standard deviation of each flyby radius/altitude, B-plane parameters, 

final period, and TCM and JOI magnitudes. Below in Figure 1 is an example trajectory, a single 

run through the triple-satellite-aided capture sequence showing the locations of each of the flybys 

at the time of closest approach, apojove is not shown. All integration pauses are marked with a X, 

moons with a circle, and Jupiter with a star. Note the post-Ganymede TCM pause that does not 

coincide with a flyby, and the JOI pause at perijove. On this scale, all of the Monte Carlo runs 

would look exactly like Figure 1. 
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Figure 1: Example Callisto-Io-JOI-Ganymede Trajectory, Jupiter-Centered Coordinates 

Because the initial state is subject to errors in position and velocity of Jupiter, Callisto, and the 

spacecraft, and it does not receive a TCM before the ballistic approach to Callisto, the Callisto 

flyby experiences the greatest spread in B-plane parameter error. However, the errors experienced 

are still relatively small, and the Callisto periapsis TCM is performed afterwards, beginning the 

navigation and ensuring smaller errors for the subsequent mission phases. Below, Table 5 details 

the statistical properties of the Callisto flyby, while Figure 2 gives a graphical scatter plot show-

ing the B-plane intersection point spread for the 2500 script repetitions.  

Table 5: Callisto Flyby Statistical Properties 

Rp Altp BdotR BdotT B Angle

Average 2918.11 507.81 -2.03 2962.49 -0.04

Min. 2914.56 504.26 -5.26 2958.94 -0.10

Max 2921.80 511.50 1.22 2966.18 0.02

Range 7.25 7.25 6.48 7.24 0.13

Std. Dev. 1.00 0.95 1.00 0.02

[km] [km] [km] [km] [deg]  

It is important to note the scale of these scatter plots, which is too small to warrant display rel-

ative to the surfaces of the moons. The scale has been chosen instead to adequately show the scat-

ter pattern. Also shown are inner and outer probability error ellipses corresponding to 1-σ 

(68.3%) and 3-σ (99.7%) respectively. 
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Figure 2: Callisto B-plane Scatter, with 1-σ and 3-σ Error Ellipses 

Note that the range in Callisto flyby altitude is still only 7.25 km, with a very safe minimum 

altitude of 504.26 km. Furthermore, the B-plane angle achieves an average of -0.04 deg, very 

close to the desired 0 deg planar flyby. Similarly, the Io flyby is analyzed to reveal its statistical 

distribution and B-plane spread. Table 6 and Figure 3 below detail these results. 

Table 6: Io Flyby Statistical Properties 

Rp Altp BdotR BdotT B Angle

Average 2112.42 290.82 -964.63 1902.30 -26.89

Min. 2109.67 288.07 -967.36 1899.38 -26.95

Max 2115.19 293.59 -962.35 1904.49 -26.83

Range 5.53 5.53 5.01 5.11 0.13

Std. Dev. 0.40 0.37 0.41 0.01

[km] [km] [km] [km] [deg]  
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Figure 3: Io B-plane Scatter, with 1-σ and 3-σ Error Ellipses 

Because the Callisto periapsis TCM serves to target the Io flyby, the spread here is much more 

controlled, with a range of 5.53 km and a safe minimum altitude of 288.07 km. Note that the Cal-

listo periapsis TCM targets a specific Io B-plane angle in order to reach a suitable inclination to 

reach Ganymede. The angle here is very consistent around the average of -26.89 deg with a range 

of only 0.13 deg. Again, after JOI and its associated adjustment, which is treated like a TCM, a 

similar set of data is presented for the Ganymede flyby below in Table 7 and Figure 4. 

Table 7: Ganymede Flyby Statistical Properties 

Rp Altp BdotR BdotT B Angle

Average 2729.68 98.48 512.52 -2731.33 169.37

Min. 2721.01 89.81 511.23 -2740.05 169.33

Max 2738.17 106.97 514.08 -2722.64 169.42

Range 17.16 17.16 2.84 17.41 0.09

Std. Dev. 2.66 0.42 2.72 0.01

[km] [km] [km] [km] [deg]  
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Figure 4: Ganymede B-plane Scatter, with 1-σ and 3-σ Error Ellipses 

The Ganymede flyby spread is relatively controlled in BdotR, but varies a relatively large 

amount in BdotT, with ranges of 2.84 km and 17.41 km respectively. This is, however, not an 

issue because the Ganymede flyby is not critical for targeting subsequent flybys like the previous 

ones. Because the altitude does not vary significantly, the flyby is successful as it receives sizable 

gravity assist without approaching dangerously close; and the following TCM 2 can easily correct 

these errors to target the appropriate apojove. TCM 2 is essentially a JOI cleanup maneuver, so it 

is not required to safely navigate the flybys. However, the subsequent Jupiter satellite tour would 

require it to efficiently target the first flyby after capture. 

The script recorded all of the components for each maneuver, and through post-processing the 

statistical properties were extracted for each component. Additionally, the mission ΔV was rec-

orded and analyzed similarly. The reduced statistical maneuver data can be examined below in 

Table 8.  

Table 8: Statistical Maneuver Data [m/s] 

TCM 1 (Callisto periapsis) Nominal JOI JOI Adjustment

ΔVx ΔVy ΔVz ΔVx ΔVy ΔVz ΔVx ΔVy ΔVz

Average 0.000 0.000 0.009 -122.615 -221.027 -8.767 -1.178 -0.378 2.666

Min. -0.837 -0.198 -1.246 -122.737 -221.092 -8.772 -23.506 -4.787 1.418

Max. 0.928 0.177 1.242 -122.497 -220.960 -8.762 21.191 4.055 4.320

Range 1.765 0.375 2.488 0.240 0.133 0.010 44.697 8.842 2.902

Std. Dev. 0.271 0.059 0.347 0.037 0.020 0.001 6.788 1.347 0.400

TCM 2 (post-Ganymede) Apojove Period Match

ΔVx ΔVy ΔVz ΔVx ΔVy ΔVz

Average -0.026 0.032 0.001 0.000 -0.001 0.000

Min. -23.850 -69.106 -2.863 -1.217 -1.718 -0.102

Max. 21.028 69.587 2.564 1.324 1.813 0.108

Range 44.878 138.693 5.427 2.541 3.531 0.211

Std. Dev. 6.771 20.941 0.862 0.387 0.536 0.034 14.344

Mission ΔV

Magnitude

272.442

253.982

345.523

91.542

 

This table details the average, minimum, etc. of each component of each maneuver in m/s. It is 

important to note that these are the bounds of each component, and do not correspond to a partic-
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ular maneuver instance. A histogram showing mission ΔV magnitude probability distribution can 

be examined in Figure 5. 

 

Figure 5: Mission ΔV Histogram 

As is shown, the mission ΔV probability distribution is heavily skewed toward the low end, 

but covers a sizable range, from 253.982 m/s to the 99
th
 percentile value of 317.619 m/s (with a 

few outliers above that value). However, the average is 272.442 m/s, the median is 269.132 m/s, 

and the probability distribution peaks at an expected mission ΔV value of 257.643 m/s, represent-

ing nearly 8% of all mission runs, 197 runs. This further demonstrates the higher probability to-

ward less ΔV, with the extreme maximum having a very rare chance of occurrence when unfavor-

able perturbations combined, resulting in only six of the 2500 runs requiring a ΔV of more than 

330 m/s. Furthermore, because the ideal post-Ganymede TCM experiences no execution error, it 

had no issue achieving 295.271 day period of the nominal MATLAB trajectory, with a range and 

standard deviation on the order of the machine’s precision due to its deterministic behavior. 

CONCLUSION 

As a general measure of success, the Monte Carlo simulation experienced no fatal script errors 

and no instances of a sub-surface flyby. The statistical properties of the mission ΔV requirements 

are consistent and favorable, demonstrating that the mission is feasibly navigable given reasona-

ble errors. Perturbations do not in any case cause extreme course deviations that cannot be cor-

rected with modest trajectory corrections. As will be discussed in the following sections, the re-

sults fall within expected boundaries and represent an efficient, desirable mission design for Jovi-

an capture which can be used for missions with various means and ends. The method employed is 

rigorous and adjustable, statistically stable and theoretically sound. 

Delta-v Comparison 

The flyby sequence examined here was a triple-satellite-aided capture with a perijove radius of 

approximately 3.3 RJ, yielding a median mission ΔV of 269.132 m/s and median adjusted JOI 

magnitude of 253.686 m/s. This approximately fits in the preliminary navigation findings of 
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Lynam and Longuski, as shown by their representative data shown in Table 9, which claimed a 

best-case triple-flyby JOI of 245 m/s with a perijove of 3 RJ. 

Table 9: JOI ΔV [m/s] for best Jupiter Capture at various RJ
9
 

Flyby Sequences 5 RJ 4 RJ 3 RJ 2 RJ 1 RJ

Unaided 825 735 641 524 371

Best Single 556 526 483 416 308

Best Double 330 340 333 299 228

Best Triple 202 232 245 234 190

Best Quad N/A N/A N/A 175 160  

These data further suggest that triple-satellite-aided captures may arguably provide the best 

opportunities for entry into the Jovian system. This is partially due to the non-existence of quad-

ruple flyby sequences with reasonable perijove radii; a perijove radius of less than 3 RJ would 

experience intense radiation from Jupiter, making only the first three columns of data worth con-

sidering. Of these, the triple-flyby sequence clearly provides substantial ΔV reduction over other 

methods of capture.  

Adaptability 

Because the MATLAB model is all original script, written functionally and with an adaptive 

step size ode113 integrator, it can be easily modified to similarly examine different flyby se-

quences and even use low-thrust SEP. Such work has been examined in other existing software 

packages by Patrick and Lynam.
11

 This method allows for alteration of all spacecraft initial condi-

tions, allowing for various modes of interplanetary intercept, rather than the simple near-

Hohmann transfer employed to reach the initial state in this mission profile. By altering the inter-

planetary course, flyby encounter order, propulsion method and flyby safety margins, the capture 

could be further optimized for absolute minimal ΔV or for a particular science schedule. This be-

ing said, further investigation would be required in order to determine if SEP would indeed be 

capable of performing the necessary corrections under the influence of the applied errors. 
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